精英家教网 > 高中数学 > 题目详情
2.以点(5,4)为圆心且与x轴相切的圆的方程是(  )
A.(x-5)2+(y-4)2=16B.(x+5)2+(y-4)2=16C.(x-5)2+(y-4)2=25D.(x+5)2+(y-4)2=25

分析 由A点到x轴的距离为A纵坐标的绝对值,得到圆的半径为4,由圆心和半径写出圆的标准方程即可.

解答 解:由题意得:圆的半径r=4,
则所求圆的标准方程为:(x-5)2+(y-4)2=16.
故选A.

点评 此题考查了圆的标准方程,以及直线与圆的位置关系,根据题意得出圆的半径为A纵坐标的绝对值是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过点(1,$\frac{3}{2}$),且离心率为$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)过椭圆C上异于其顶点的任一点P,作⊙O:x2+y2=3的两条切线,切点分别为M,N,且直线MN在x轴,y轴上截距分别为m,n,证明:$\frac{1}{4{m}^{2}}$+$\frac{1}{3{n}^{2}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若k∈R,则“k>1”是方程“$\frac{x^2}{k-1}+\frac{y^2}{k+1}=1$”表示椭圆的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的各项均为正数,其前n项和为Sn,且满足a1=1,an+1=2$\sqrt{S_n}+1,n∈{N^*}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=$\frac{{4{n^2}}}{{{a_n}{a_{n+1}}}}$,设数列{bn}的前n项和为Tn,若?n∈N*,不等式Tn-na<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知实数x,y满足方程(x-2)2+(y-2)2=1.
(1)求$\frac{2x+y-1}{x}$的取值范围;
(2)求|x+y+l|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为研究两变量x和y的线性相关性,甲、乙两人分别做了研究,利用线性回归方法得到回归直线方程m和n,两人计算$\overline{x}$相同,$\overline{y}$也相同,则下列说法正确的是(  )
A.m与n重合B.m与n平行
C.m与n交于点($\overline{x}$,$\overline{y}$)D.无法判定m与n是否相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在无重复数字的五位数a1a2a3a4a5中,若a1<a2,a2>a3,a3<a4,a4>a5时称为波形数,如89674就是一个波形数,由1,2,3,4,5组成一个没有重复数字的五位数是波形数的概率是$\frac{2}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线y=x相交于M,N两点,若在椭圆上存在点P,使得直线MP,NP斜率之积为-$\frac{4}{9}$,则椭圆离心率为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}的前n项和${S_n}={2^n}-a$,则$a_1^2+a_2^2+…+a_n^2$=(  )
A.(2n-1)2B.$\frac{1}{3}({2^n}-1)$C.4n-1D.$\frac{1}{3}({4^n}-1)$

查看答案和解析>>

同步练习册答案