精英家教网 > 高中数学 > 题目详情
如图,已知四边形ABCD是矩形,AD⊥平面ABE,AD=AE,点F在线段DE上,且AF⊥平面BDE.求证:
(1)BE⊥平面ADE;
(2)BE∥平面AFC;
(3)平面AFC⊥平面ADE.
分析:(1)欲证BE⊥平面ADE,根据线面垂直的判定定理可知只需在平面ADE内找两条相交直线与BE垂直即可,根据线面垂直的性质可知AF⊥BE,AD⊥BE,而AD∩AF=A,满足定理所需条件;
(2)设AC与BD交于O,连接FO,然后根据中位线定理可知BE∥FO,而FO?平面AFC,BE?平面AFC,满足线面平行的判定定理所需条件;
(3)结合(1)(2)两问可知FO⊥平面ADE,而FO?平面AFC,满足面面垂直的判定定理.
解答:解:(1)∵AF⊥平面BDE,BE?平面BDE,AD⊥平面ABE,BE?平面ABE
∴AF⊥BE,AD⊥BE,而AD∩AF=A
∴BE⊥平面ADE;
(2)设AC与BD交于O,连接FO
∵AD=AE,AF⊥DE
∴点F为DE的中点,而O为BD的中点
根据中位线定理可知BE∥FO
而FO?平面AFC,BE?平面AFC
∴BE∥平面AFC;
(3)∵BE⊥平面ADE,BE∥FO
∴FO⊥平面ADE
而FO?平面AFC
∴平面AFC⊥平面ADE.
点评:本题主要考查了线面垂直的判定,以及线面平行的判定和面面垂直的判定,同时考查了空间想象能力和推理论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四边形ABCD为直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC将△ABC折起,使点B到点P的位置,且平面PAC⊥平面ACD.
(I)证明:DC⊥平面APC;
(II)求棱锥A-PBC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)如图,已知四边形ABCD内接于⊙O,且AB为⊙O的直径,直线MN切
⊙O于D,∠MDA=45°,则∠DCB=
135°
135°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知四边形ABCD是正方形,PD⊥平面ABCD,PD=AD,点E,F分别是线段PB,AD的中点
(1)求证:FE∥平面PCD;
(2)求异面直线DE与AB所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四边形ABCD为直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC将△ABC折起,使点B到点P的位置,且平面PAC⊥平面ACD.
(I)证明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四边形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC与BD交于E点,F是PD的中点.
(1)求证:PB∥平面AFC;
(2)求多面体PABCF的体积.

查看答案和解析>>

同步练习册答案