【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆于两点,点在直线上的射影依次为.
(1)求椭圆的方程;
(2)若直线交轴于点,且,当变化时,证明: 为定值;
(3)当变化时,直线与是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
【答案】(1);(2)见解析;(3).
【解析】试题分析:(1)由题设条件求出椭圆的右焦点与上顶点坐标,即可得出、的值,再求出的值即可求得椭圆的方程;(2)设,联立直线与椭圆的方程,结合韦达定理得出与,再根据及,从而可表示出,化简即可得证;(3))当时,易得与相交于点,可猜想: 变化时, 与相交于点,再证明猜想成立即可.
试题解析:(1)∵过椭圆的右焦点,
∴右焦点,即,
又∵的焦点为椭圆的上顶点,
∴,即,
∴椭圆的方程;
(2)由得, ,
设,则,
∵,
∴,
∴,
∴,
综上所述,当变化时, 的值为定值;
(3)当时,直线轴,则为矩形,易知与是相交于点,猜想与相交于点,证明如下:
∵,
∵,
∴,即三点共线.
同理可得三点共线,
则猜想成立,即当变化时, 与相交于定点.
科目:高中数学 来源: 题型:
【题目】设某地区乡居民人民币储蓄存款(年底余额)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
时间代号 | 1 | 2 | 3 | 4 | 5 | 6 |
储蓄存款(千亿元) | 3.5 | 5 | 6 | 7 | 8 | 9.5 |
(1)求关于的回归方程,并预测该地区2019年的人民币储蓄存款(用最简分数作答).
(2)在含有一个解释变量的线性模型中,恰好等于相关系数的平方,当时,认为线性回归模型是有效的,请计算并且评价模型的拟合效果(计算结果精确到).
附:
, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生产厂家生产一种产品的固定成本为4万元,并且每生产1百台产品需增加投入0.8万元.已知销售收入(万元)满足(其中是该产品的月产量,单位:百台),假定生产的产品都能卖掉,请完成下列问题:
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为.
(1)求椭圆的方程;
(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆于两点为圆的直径,且直线的斜率大于,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,定直线,动点到点的距离比点到的距离小1.
(1)求动点P的轨迹C的方程;
(2)过点的直线与(1)中轨迹C相交于两个不同的点M、N,若,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是( )
A. 甲的极差是29 B. 甲的中位数是24
C. 甲罚球命中率比乙高 D. 乙的众数是21
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第一道审核、第二道审核、第三道审核通过的概率分别为, , ,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.
(1)求审核过程中只通过两道程序的概率;
(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),直线的参数程为(为参数),设直线与的交点为,当变化时点的轨迹为曲线.
(1)求出曲线的普通方程;
(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,点为曲线的动点,求点到直线的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com