精英家教网 > 高中数学 > 题目详情

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

【答案】(1);(2)见解析;(3).

【解析】试题分析:(1)由题设条件求出椭圆的右焦点与上顶点坐标,即可得出的值,再求出的值即可求得椭圆的方程;(2联立直线与椭圆的方程结合韦达定理得出再根据从而可表示出化简即可得证;(3)当时,易得相交于点可猜想 变化时 相交于点再证明猜想成立即可.

试题解析:(1过椭圆的右焦点

∴右焦点,即

又∵的焦点为椭圆的上顶点,

,即

∴椭圆的方程

2)由得,

,则

综上所述,当变化时, 的值为定值

3)当时,直线轴,则为矩形,易知是相交于点,猜想相交于点,证明如下:

,即三点共线.

同理可得三点共线,

则猜想成立,即当变化时, 相交于定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设某地区乡居民人民币储蓄存款(年底余额如下表

年份

2012

2013

2014

2015

2016

2017

时间代号

1

2

3

4

5

6

储蓄存款(千亿元)

3.5

5

6

7

8

9.5

(1)求关于的回归方程,并预测该地区2019年的人民币储蓄存款(用最简分数作答).

(2)在含有一个解释变量的线性模型中,恰好等于相关系数的平方,当时,认为线性回归模型是有效的,请计算并且评价模型的拟合效果(计算结果精确到).

附:

, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生产厂家生产一种产品的固定成本为4万元,并且每生产1百台产品需增加投入0.8万元.已知销售收入(万元)满足(其中是该产品的月产量,单位:百台),假定生产的产品都能卖掉,请完成下列问题:

(1)将利润表示为月产量的函数

(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为

(1)求椭圆的方程;

(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆两点为圆的直径,且直线的斜率大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,定直线,动点到点的距离比点的距离小1.

(1)求动点P的轨迹C的方程;

(2)过点的直线与(1)中轨迹C相交于两个不同的点M、N,若,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第一道审核、第二道审核、第三道审核通过的概率分别为 ,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.

(1)求审核过程中只通过两道程序的概率;

(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,焦距为,抛物线 的焦点是椭圆的顶点.

(1)求的标准方程;

(2)上不同于的两点 满足,且直线相切,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),直线的参数程为为参数),设直线的交点为,当变化时点的轨迹为曲线.

(1)求出曲线的普通方程;

(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,点为曲线的动点,求点到直线的距离的最小值.

查看答案和解析>>

同步练习册答案