精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数),直线的参数程为为参数),设直线的交点为,当变化时点的轨迹为曲线.

(1)求出曲线的普通方程;

(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,点为曲线的动点,求点到直线的距离的最小值.

【答案】(1)的普通方程为;(2) 的最小值为.

【解析】【试题分析】(1)利用加减消元法,消去参数,可将转化为普通方程.将两方程联立,消去可得的普通方程.(2)先将直线的极坐标方程转化为直角坐标方程,写出的参数方程,利用点到直线的距离公式和三角函数辅助角公式,可求得距离的最小值.

【试题解析】

(1)将 的参数方程转化为普通方程

,①

,②

①×②消可得:

因为,所以,所以的普通方程为.

(2)直线的直角坐标方程为: .

由(1)知曲线与直线无公共点,

由于的参数方程为为参数, ),

所以曲线上的点到直线的距离为

所以当时, 的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆两点,点在直线上的射影依次为.

(1)求椭圆的方程;

(2)若直线轴于点,且,当变化时,证明: 为定值;

(3)当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如图.

(1)求频率分布直方图中a的值;

(2)估计总体中成绩落在[50,60)中的学生人数;

(3)根据频率分布直方图估计20名学生数学考试成绩的众数,平均数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个子中装有四张卡片,每张卡片上写有一个数字,数字分别是,盒子中随机抽取卡片,每张卡片被抽到的概率相等.

(1)若一次抽取三张卡片,求抽到的三张卡片上的数字之和大于的概率

(2)若第一次抽一张卡片,放回后匀再抽取一张卡片,求两次抽取中至少有一次到写有数字的卡片的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

1)求的方程;

2)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.

证明:

MAB,MDE的面积分别是.问:是否存在直线,使得=?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史。某陶瓷厂在生产过程中,对仿制的100件工艺品测得其重量(单位; )数据,将数据分组如下表:

分组

频数

频率

4

26

28

10

2

合计

100

(1)在答题卡上完成频率分布表;

(2)以表中的频率作为概率,估计重量落在中的概率及重量小于2.45的概率是多少?

(3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此,估计这100个数据的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆内一定点,动圆过点且与圆内切.记动圆圆心的轨迹为.

(Ⅰ)求轨迹方程;

(II)过点的动直线l交轨迹MN两点,试问:在坐标平面上是否存在一个定点Q,使得以线段MN为直径的圆恒过点Q?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届河南省南阳市第一中学高三上学期第八次考试】2017514日至15日,一带一路国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示.

1)估计甲品牌产品寿命小于200小时的概率;

2)在抽取的这两种品牌产品中,抽取寿命超过300小时的产品3个,设随机变量表示抽取的产品是甲品牌的产品个数,求的分布列和数学期望值.

查看答案和解析>>

同步练习册答案