精英家教网 > 高中数学 > 题目详情
给出四个区间:①(0,1);②(1,2);③(2,3);④(3,4),则函数f(x)=2x+x-4的零点所在的区间是这四个区间中的哪一个:
 
 (只填序号)
考点:函数零点的判定定理
专题:计算题,函数的性质及应用
分析:易知函数f(x)=2x+x-4是定义域上的增函数,代入端点求函数值即可.
解答: 解:函数f(x)=2x+x-4是定义域上的增函数,
f(0)=1+0-4<0;
f(1)=2+1-4<0;
f(2)=4+2-4>0;
故函数f(x)=2x+x-4的零点所在的区间是(1,2);
故答案为:②.
点评:本题考查了函数零点判定定理的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A(2,1),B(1,-2),C(
3
5
,-
1
5
),动点P(a,b)满足0≤
OP
OA
≤2且0≤
OP
OB
≤2,则点P到点C的距离大于
1
4
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数f(x)=
sin2x+sinx
sinx+1
是奇函数;
②函数f(x)=1既是奇函数又是偶函数;
③函数y=(
1
3
)x
与y=-l0g3x的图象关于直线y=x对称;
④若y=f(x)是定义在R上的函数,则y=f(1+x)与y=f(1-x)的图象关于y轴对称.
其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)(A>0,|φ|<π)的一段图象如图所示.
(1)求函数的解析式;
(2)求这个函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(-1,1)上的函数f (x),其导函数为f′(x)=l+cosx,且f(0)=0,如果f(1-x)+f(l-x2)<0,则实数x的取值范围为(  )
A、(0,1)
B、(1,
2
C、(-2,-
2
)
D、(1,
2
)∪(-
2
,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个透明的球形装饰品内放置了两个公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的
3
16
,设球的半径为R,圆锥底面半径为r.
(1)试确定R与r的关系,并求出较大圆锥与较小圆锥的体积之比;
(2)求出两个圆锥的体积之和与球的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的命题,并指出所构成的这些命题的真假.
(1)p:连续的三个整数的乘积能被2整除,q:连续的三个整数的乘积能被3整除;
(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,其正视图与侧视图都是边长为2的等边三角形,则该几何体的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2-x+2)5的展开式中x3的系数为
 

查看答案和解析>>

同步练习册答案