精英家教网 > 高中数学 > 题目详情
解不等式:x(x-3)(2x+1)(x-1)(x3-1)≤0.
考点:其他不等式的解法
专题:不等式的解法及应用
分析:把原不等式等价转化为 x(2x+1)(x-3)(x-1)2≤0,再用穿根法求得它的解集.
解答: 解:x(x-3)(2x+1)(x-1)(x3-1)≤0,即 x(2x+1)(x-3)(x-1)2(x2+x+1)≤0.
由于x2+x+1>0,故不等式即  x(2x+1)(x-3)(x-1)2≤0,用穿根法求得它的解集为{x|x<-
1
2
 0≤x≤3}.
点评:本题主要考查用穿根法解高次不等式,体现了转化、数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

i是虚数单位,若复数z=
3+i
1-i
,则复数z的实部与虚部的和是(  )
A、3B、1+2i
C、2D、1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+ϕ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<
π
2

(1)求函数f(x)的解析式.
(2)记g(x)=log2[f(x)-1],求函数g(x)的定义域.
(3)若对任意的x∈[-
π
6
π
6
],不等式log
1
2
f(x)>m-3恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在平面四边形ACPE中,D为AC中点,AD=DC=PD=2,AE=1,且AE⊥AC,PD⊥AC,现沿PD折起使∠ADC=90°,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥P-GHF的体积;
(2)在线段PC上是否存在一点M,使直线FM与直线PA所成角为60°?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1968年墨西哥城举办的奥运会跳远比赛中,比蒙表演了令人惊叹的一跳,以8.90米的成绩刷新了世界记录.若记他起跳后的时间为t秒,比蒙所处的高度为h米,则可以用函数h=4.6t-4.9t2来描述他起跳后高度的变化.
(1)画出函数的图象;
(2)他起跳后的最大高度是多少(精确到0.01米)?
(3)分别记当t=0.4,0.5,0.8时,他所处的高度为h1,h2,h3,求h1,h2,h3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x+3
2y
-2
3+y
x-3
=
0
0
,求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-
1
2
x(0≤x≤4)
1
2
x2-4x+6(4<x≤6)
的图象上有两点A(t,f(t))、B(t+1,f(t+1)),自A、B作x轴的垂线,垂足为D、C,求四边形ABCD的面积S关于t的函数解析式(如图),并求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(
1
2
x+
π
4
),x∈R.
(1)用“五点法”作出在一个周期内f(x)的简图.(列表、作图);
(2)写出f(x)的对称轴方程、对称中心及单调递减区间;
(3)函数y=sinx的图象经过怎样的变换可得到f(x)=3sin(
1
2
x+
π
4
),x∈R的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosωx(
3
sinωx+cosωx)(ω>0)图象的一个对称中心到最近的对称轴的距离为
π
4

﹙Ⅰ﹚求ω的值及函数f(x)当x∈[0,π]时的单调递减区间;
﹙Ⅱ﹚当x∈[0,
π
2
]时,求f(x)的最小值及取得最小值时x的值.

查看答案和解析>>

同步练习册答案