精英家教网 > 高中数学 > 题目详情
8.已知实数x,y满足方程(x-2)2+y2=3,则$\frac{y}{x}$的最小值-$\sqrt{3}$.

分析 (x-2)2+y2=3表示以点(2,0)为圆心,以$\sqrt{3}$为半径的圆,设$\frac{y}{x}$=k,即y=kx进而根据圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值

解答 解:(x-2)2+y2=3表示以点(2,0)为圆心,以$\sqrt{3}$为半径的圆.
设$\frac{y}{x}$=k,即y=kx,由圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值,
由$\frac{|2k-0|}{\sqrt{{k}^{2}+1}}$=$\sqrt{3}$,解得k2=3.
∴kmax=$\sqrt{3}$,kmin=-$\sqrt{3}$,
故答案为:-$\sqrt{3}$

点评 此题考查了直线与圆的位置关系,以及斜率的计算公式,弄清题意是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知a∈R,函数f(x)=ex-a(x+1)的图象与x轴相切.
(1)求f(x)的单调区间;
(2)若x>1时,f(x)>mx2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,已知a1=$\frac{1}{3}$,an+1=$\frac{1}{3}$an-$\frac{2}{{3}^{n+1}}$,n∈N*,设Sn为{an}的前n项和.
(1)求证:数列{3nan}是等差数列;
(2)求Sn
(3)是否存在正整数p,q,r(p<q<r),使Sp,Sq,Sr成等差数列?若存在,求出p,q,r的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,P为BC中点,若(sinC)$\overrightarrow{AC}$+(sinA)$\overrightarrow{PA}$+(sinB)$\overrightarrow{PB}$=$\overrightarrow{0}$,则△ABC的形状为(  )
A.直角三角形B.钝角三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算下列各式
(1)$\root{3}{{(1+\sqrt{2}{)^3}}}+\root{4}{{(1-\sqrt{2}{)^4}}}$;
(2)${(-\frac{7}{6})^0}+{8^{0.25}}×\root{4}{2}+{(\root{3}{2}×\sqrt{3})^6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的各项均为正数,观察程序框图,若k=5,k=10时,分别有S=$\frac{5}{11}$和S=$\frac{10}{21}$
(1)试求数列{an}的通项;
(2)令bn=2an,求b1+b2+…+b2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.集合A={1,3,a},B={1,a2},问是否存在这样的实数a,使得B⊆A,且A∩B={1,a}.若存在,求出实数a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线2ax-by+2=0(a>0,b>0)经过点(-1,2),则$\frac{1}{a}$+$\frac{1}{b}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知曲线y=x2-lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1也相切,则a=1.

查看答案和解析>>

同步练习册答案