分析 将点(-1,2)的坐标代入方程,再由乘法和基本不等式,展开计算即可得到所求最小值.
解答 解:将点(-1,2)的坐标代入方程,由题意可得2a+2b-2=0,即a+b=1,a,b>0,
则$\frac{1}{a}$+$\frac{1}{b}$=(a+b)($\frac{1}{a}$+$\frac{1}{b}$)=2+$\frac{a}{b}$+$\frac{b}{a}$≥2+2$\sqrt{\frac{a}{b}•\frac{b}{a}}$=4,
当且仅当a=b=$\frac{1}{2}$时,取得最小值4.
故答案为:4.
点评 本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3} | B. | {1,2} | C. | {1,3} | D. | {2,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 4 | C. | -4$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{15},\frac{1}{6}}]$ | B. | $({\frac{1}{15},\frac{1}{4}}]$ | C. | $({\frac{1}{6},\frac{1}{4}}]$ | D. | $({\frac{1}{4},\frac{5}{18}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 4$\sqrt{2}$ | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com