精英家教网 > 高中数学 > 题目详情
12.已知|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为60°,若k$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow b$垂直,则k的值为(  )
A.-4B.4C.-4$\sqrt{3}$D.4$\sqrt{3}$

分析 根据平面向量的数量积与向量垂直的定义,列出方程求解即可.

解答 解:∵|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为60°,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|×|$\overrightarrow{b}$|cos60°=1×2×$\frac{1}{2}$=1,
又k$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow b$垂直,
∴(k$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=k$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=k+22=0,
解得k=-4.
故选:A.

点评 本题考查了平面向量的数量积与向量垂直的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ln(x+$\sqrt{1+{x}^{2}}$)+$\frac{3{e}^{x}+1}{{e}^{x}+1}$在区间[-k,k](k>0)上的最大值为M,最小值为m,则M+m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算下列各式
(1)$\root{3}{{(1+\sqrt{2}{)^3}}}+\root{4}{{(1-\sqrt{2}{)^4}}}$;
(2)${(-\frac{7}{6})^0}+{8^{0.25}}×\root{4}{2}+{(\root{3}{2}×\sqrt{3})^6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.集合A={1,3,a},B={1,a2},问是否存在这样的实数a,使得B⊆A,且A∩B={1,a}.若存在,求出实数a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.F是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点.则|PA|+|PF|的最小值为(  )
A.1B.2C.4-$\sqrt{5}$D.4+$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线2ax-by+2=0(a>0,b>0)经过点(-1,2),则$\frac{1}{a}$+$\frac{1}{b}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{f_1}(x),x∈[{0,\frac{1}{2}})\\{f_2}(x),x∈[{\frac{1}{2},1}]\end{array}$,其中f1(x)=-2(x-$\frac{1}{2}$)2+1,f2(x)=-2x+2.
(1)在如图直角坐标系中画出y=f(x)的图象;
(2)写出y=f(x)的单调增区间;
(3)若x0∈[0,$\frac{1}{2}}$),x1=f(x0),f(x1)=x0.求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{x}$+$\frac{1}{x-2}$的定义域是(  )
A.[0,2]∪(2,+∞)B.[0,+∞)C.[0,2)∪(2,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若数列{an}中的项都满足a2n-1=a2n<a2n+1(n∈N*),则称{an}为“阶梯数列”.
(1)设数列{bn}是“阶梯数列”,且b1=1,b2n+1=9b2n-1(n∈N*),求b2016
(2)设数列{cn}是“阶梯数列”,其前n项和为Sn,求证:{Sn}中存在连续三项成等差数列,但不存在连续四项成等差数列;
(3)设数列{dn}是“阶梯数列”,且d1=1,d2n+1=d2n-1+2(n∈N*),记数列{$\frac{1}{{d}_{n}{d}_{n+2}}$}的前n项和为Tn,问是否存在实数t,使得(t-Tn)(t+$\frac{1}{{T}_{n}}$)<0对任意的n∈N*恒成立?若存在,请求出实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案