精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\left\{\begin{array}{l}{f_1}(x),x∈[{0,\frac{1}{2}})\\{f_2}(x),x∈[{\frac{1}{2},1}]\end{array}$,其中f1(x)=-2(x-$\frac{1}{2}$)2+1,f2(x)=-2x+2.
(1)在如图直角坐标系中画出y=f(x)的图象;
(2)写出y=f(x)的单调增区间;
(3)若x0∈[0,$\frac{1}{2}}$),x1=f(x0),f(x1)=x0.求x0的值.

分析 (1)根据解析式可得函数的图象;
(2)根据图象写出y=f(x)的单调增区间;
(3)根据分段函数,建立方程关系,解方程即可得到结论.

解答 解:(1)如图所示:
(2)单调增区间$[{0,\frac{1}{2}}]$,
(3)若${x_0}∈[{0,\frac{1}{2}})$,
则${x_1}=f({x_0})=-2{({x_0}-\frac{1}{2})^2}+1$.
此时$\frac{1}{2}≤{x_1}<1$,
∴$f({x_1})=-2{x_1}+2=-2[{-2{{({x_0}-\frac{1}{2})}^2}+1}]+2=4{({x_0}-\frac{1}{2})^2}={x_0}$
整理得4x02-5x0+1=0,
解得x0=1(舍)或${x_0}=\frac{1}{4}$.

点评 本题主要考查了分段函数的函数解析式的应用,解题的关键是需要根据不同的x确定对应的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知全集U={1,2,3,4,5},M={3,4,5},N={2,3},则集合(∁UN)∩M=(  )
A.{2}B.{1,3}C.{2,5}D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,如果2b=a+c,∠B=30°,△ABC的面积为$\frac{3}{2}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为60°,若k$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow b$垂直,则k的值为(  )
A.-4B.4C.-4$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在R上的奇函数,且f(x+$\frac{3}{2}$)=-f(x),当x∈(-2,0)时f(x)=2x,则f(2014)+f(2015)+f(2016)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=$\frac{1}{3}$x3-3x2+(8-a)x-5-a,若存在唯一的正整数x0,使得f(x0)<0,则a的取值范围是(  )
A.$({\frac{1}{15},\frac{1}{6}}]$B.$({\frac{1}{15},\frac{1}{4}}]$C.$({\frac{1}{6},\frac{1}{4}}]$D.$({\frac{1}{4},\frac{5}{18}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}-x,x∈[{-1,0})\\ \frac{1-f(x-1)}{f(x-1)},x∈[{0,1})\end{array}\right.$,若方程f(x)-kx+k=0 有二个不同的实数根,则实数k的取值范围是(  )
A.$({-1,-\frac{1}{2}}]$B.$[{-\frac{1}{2},0})$C.[1,+∞)D.$[{-\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合P={1,2,3},则集合P的真子集个数为(  )个.
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•${(\frac{1}{3})^x}$+${(\frac{1}{9})^x}$,
(1)当a=-$\frac{1}{2}$时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以4为上界的有界函数,求实数a的取值范围.
(3)g(x)=$\frac{1-m•{x}^{2}}{1+m•{x}^{2}}$,m>-1,g(x)在[0,1]上的上界为T(m),求T(m)的范围.

查看答案和解析>>

同步练习册答案