精英家教网 > 高中数学 > 题目详情
9.已知全集U={1,2,3,4,5},M={3,4,5},N={2,3},则集合(∁UN)∩M=(  )
A.{2}B.{1,3}C.{2,5}D.{4,5}

分析 求出N的补集,然后求解交集即可.

解答 解:全集U={1,2,3,4,5},N={2,3},则集合∁UN={1,4,5},M={3,4,5},
集合(∁UN)∩M={4,5}.
故选:D.

点评 本题考查集合的基本运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.平行四边形ABCD中,∠DAB=60°,AB=4,AD=2.若P为CD边上一点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:$\sqrt{(lo{g}_{2}5)^{2}-6lo{g}_{2}5+9}$+log23-log2${\;}^{\frac{12}{5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ln(x+$\sqrt{1+{x}^{2}}$)+$\frac{3{e}^{x}+1}{{e}^{x}+1}$在区间[-k,k](k>0)上的最大值为M,最小值为m,则M+m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若0<x<$\sqrt{3}$.则y=x$\sqrt{3-{x}^{2}}$的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,已知a1=$\frac{1}{3}$,an+1=$\frac{1}{3}$an-$\frac{2}{{3}^{n+1}}$,n∈N*,设Sn为{an}的前n项和.
(1)求证:数列{3nan}是等差数列;
(2)求Sn
(3)是否存在正整数p,q,r(p<q<r),使Sp,Sq,Sr成等差数列?若存在,求出p,q,r的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)求函数y=2sin(2x+$\frac{π}{3}$)(-$\frac{π}{6}$<x<$\frac{π}{6}$)的值域;
(2)求函数y=2cos2x+5sin x-4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算下列各式
(1)$\root{3}{{(1+\sqrt{2}{)^3}}}+\root{4}{{(1-\sqrt{2}{)^4}}}$;
(2)${(-\frac{7}{6})^0}+{8^{0.25}}×\root{4}{2}+{(\root{3}{2}×\sqrt{3})^6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{f_1}(x),x∈[{0,\frac{1}{2}})\\{f_2}(x),x∈[{\frac{1}{2},1}]\end{array}$,其中f1(x)=-2(x-$\frac{1}{2}$)2+1,f2(x)=-2x+2.
(1)在如图直角坐标系中画出y=f(x)的图象;
(2)写出y=f(x)的单调增区间;
(3)若x0∈[0,$\frac{1}{2}}$),x1=f(x0),f(x1)=x0.求x0的值.

查看答案和解析>>

同步练习册答案