分析 由题意画出图形,建系求出A,B的坐标,设出P的坐标,得到$\overrightarrow{PA}、\overrightarrow{PB}$的坐标,代入数量积的坐标表示化为关于m的函数得答案.
解答 解:如图,![]()
以AB所在直线为x轴,以A为坐标原点建立平面直角坐标系,
则A(0,0),B(4,0),
设P(m,$\sqrt{3}$),(1≤m≤5),
则$\overrightarrow{PA}=(-m,-\sqrt{3})$,$\overrightarrow{PB}=(4-m,-\sqrt{3})$,
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$=-m(4-m)+3=m2-4m+3=(m-2)2-1,
∴当m=2时,$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为-1.
故答案为:-1.
点评 本题考查平面向量的数量积运算,考查了利用配方法求二次函数的最值,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {x|x<1} | C. | $\{x|x>-\frac{1}{a}或x<1\}$ | D. | $\{x|-\frac{1}{a}<x<1\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{n}{n+1}$ | B. | $\frac{n-1}{n}$ | C. | $\frac{n+1}{n}$ | D. | $\frac{n}{n-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{7}{25}$ | B. | $\frac{7}{25}$ | C. | $\frac{9}{25}$ | D. | $\frac{16}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2$\sqrt{2}$] | B. | (-∞,2$\sqrt{2}$) | C. | (-∞,2] | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2} | B. | {1,3} | C. | {2,5} | D. | {4,5} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com