精英家教网 > 高中数学 > 题目详情
14.设a,b∈R+,a+b-ab=0,若ln$\frac{m{\;}^{2}}{a+b}$的取值恒非正,则m的取值范围是[-2,2].

分析 a,b∈R+,a+b-ab=0,a+b=ab≤$(\frac{a+b}{2})^{2}$,解得:a+b≥4.由ln$\frac{m{\;}^{2}}{a+b}$≤0,可得0<$\frac{{m}^{2}}{a+b}$≤1,进而得出.

解答 解:∵a,b∈R+,a+b-ab=0,∴a+b=ab≤$(\frac{a+b}{2})^{2}$,
解得:a+b≥4.当且仅当a=b=2时取等号.
∵ln$\frac{m{\;}^{2}}{a+b}$≤0,
∴0<$\frac{{m}^{2}}{a+b}$≤1,
∴m2≤(a+b)min
∴m2≤4
则m的取值范围是[-2,2].
故答案为:[-2,2].

点评 本题考查了对数函数的单调性、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.集合A={x|0≤x<3且x∈N}的子集的个数为(  )
A.16B.8C.7D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x3+ax2+x+1(a∈R).若f(x)在区间(-$\frac{2}{3}$,-$\frac{1}{3}}$)内是减函数,则a的取值范围是(  )
A.$[{\frac{7}{4},+∞})$B.[2,+∞)C.[1,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若f(x)=ln(x+1)-$\frac{2}{x}$的零点在区间(k-1,k)(k∈z),则k的值为2或0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l与函数f(x)=ln($\sqrt{e}$x)-ln(1-x)的图象交于P,Q两点,若点R($\frac{1}{2}$,m)是线段PQ的中点,则实数m的值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.平行四边形ABCD中,∠DAB=60°,AB=4,AD=2.若P为CD边上一点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期;并求x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域和单调区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,a=$\sqrt{3}$,b+c=3(b>c),求b、c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=loga(x+b)(a,b为常数)的图象如图所示,则函数g(x)=b${\;}^{{x^2}-4x}}$在[0,5]上的最大值是(  )
A.$\frac{1}{b^4}$B.$\frac{1}{b^5}$C.b4D.b5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若0<x<$\sqrt{3}$.则y=x$\sqrt{3-{x}^{2}}$的最大值是$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案