| A. | $[{\frac{7}{4},+∞})$ | B. | [2,+∞) | C. | [1,+∞) | D. | (-∞,-1] |
分析 先求出函数的导数,再由f′(x)=3x2+2ax+1<0的解集是(-$\frac{2}{3}$,-$\frac{1}{3}}$),得到不等式,从而求出a的范围.
解答 解:∵函数f(x)=x3+ax2+x+1,
∴f′(x)=3x2+2ax+1<0的解集是(-$\frac{2}{3}$,-$\frac{1}{3}}$),
∴$\left\{\begin{array}{l}{\frac{4}{3}-\frac{4a}{3}+1≤0}\\{\frac{1}{3}-\frac{2a}{3}+1≤0}\end{array}\right.$,解得:a≥$\frac{7}{4}$,
故选:A.
点评 本题考查函数的单调性,导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=($\frac{1}{2}$)|x| | B. | y=x2 | C. | y=|lnx| | D. | y=2-x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{n}{n+1}$ | B. | $\frac{n-1}{n}$ | C. | $\frac{n+1}{n}$ | D. | $\frac{n}{n-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com