| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 首先利用导数或者单调性的定义可以判断函数的单调性,再根据零点的存在性定理即可判断.
解答 解:易知函数的定义域为{x|x≠1},
∵$f′(x)=ln2•{2}^{x}+\frac{3}{(x-1)^{2}}$>0,
∴函数在(-∞,1)和(1,+∞)上都是增函数,
又$f(-4)=\frac{1}{16}-\frac{-2}{-5}=\frac{1}{16}-\frac{2}{5}$<0,f(0)=1-(-2)=3>0,
故函数在区间(-4,0)上有一零点;
又f(2)=4-4=0,
∴函数在(1,+∞)上有一零点0,
综上可得函数有两个零点.
故选:C.
点评 本题考查函数零点的判断.解题关键是掌握函数零点的判断方法.利用函数单调性确定在相应区间的零点的唯一性.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{7}{4},+∞})$ | B. | [2,+∞) | C. | [1,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{b^4}$ | B. | $\frac{1}{b^5}$ | C. | b4 | D. | b5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com