精英家教网 > 高中数学 > 题目详情
16.下列函数中为偶函数又在(0,+∞)上是增函数的是(  )
A.y=($\frac{1}{2}$)|x|B.y=x2C.y=|lnx|D.y=2-x

分析 对选项一一判断函数的奇偶性和单调性,注意运用定义和常见函数的性质.

解答 解:对于A,y=($\frac{1}{2}$)|x|,有f(-x)=f(x),f(x)为偶函数,x>0时,f(x)=y=($\frac{1}{2}$)x为减函数;
对于B,y=x2,有f(-x)=f(x),f(x)为偶函数,x>0时,f(x)为增函数;
对于C,y=|lnx|,x>0,不关于原点对称,x>0时,y=|lnx|为增函数;
对于A,y=2-x,不为偶函数,x>0时,y=2-x为减函数.
故选:B.

点评 本题考查函数的奇偶性和单调性的判断,注意运用定义和常见函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=asinx+cosx满足f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x)对x∈R恒成立,则要得到g(x)=2sin2x的图象,只需把f(x)的图象(  )
A.向右平移$\frac{π}{6}$,横坐标缩短为原来的$\frac{1}{2}$
B.向右平移$\frac{π}{6}$,横坐标伸长为原来的2倍
C.向右平移$\frac{π}{3}$,横坐标缩短为原来的$\frac{1}{2}$
D.向右平移$\frac{π}{3}$,横坐标伸长为原来的2倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=$\left\{{\begin{array}{l}{{2^{|{x-1}|}}-1,0<x≤2}\\{\frac{1}{2}f(x-2),x>2}\end{array}}$则函数g(x)=2f(x)-1的零点个数为(  )个.
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合A={x|0≤x<3且x∈N}的子集的个数为(  )
A.16B.8C.7D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x≥1}\\{x-1,x<1}\end{array}}$,对其叙述正确的有几个?(  )
①定义域是R,
②定义域是∅,
③定义域是区间[1,+∞),
④在定义域上是增函数,
⑤在区间[1,+∞)上是增函数,
⑥是奇函数,
⑦f(a2+1)=a2
⑧f(x)的最小值为2.
A.0B.3C.4D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin($\frac{1}{5}$x+$\frac{13π}{6}$)(x∈R),把函数f(x)的图象向右平移 $\frac{10π}{3}$个单位长度得函数g(x)图象,则下面结论正确的是(  )
A.函数g(x)的最小正周期为5πB.函数g(x)的图象关于直线x=$\frac{π}{4}$对称
C.函数g(x)在区间[π,2π]上增函数D.函数g(x)是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知α,β均为锐角,且sinα=$\frac{3}{5}$,cos(β+$\frac{π}{6}$)=-$\frac{3\sqrt{3}}{14}$.则sin2α$\frac{24}{25}$,cosβ=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x3+ax2+x+1(a∈R).若f(x)在区间(-$\frac{2}{3}$,-$\frac{1}{3}}$)内是减函数,则a的取值范围是(  )
A.$[{\frac{7}{4},+∞})$B.[2,+∞)C.[1,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期;并求x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域和单调区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,a=$\sqrt{3}$,b+c=3(b>c),求b、c的长.

查看答案和解析>>

同步练习册答案