精英家教网 > 高中数学 > 题目详情
14.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•${(\frac{1}{3})^x}$+${(\frac{1}{9})^x}$,
(1)当a=-$\frac{1}{2}$时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以4为上界的有界函数,求实数a的取值范围.
(3)g(x)=$\frac{1-m•{x}^{2}}{1+m•{x}^{2}}$,m>-1,g(x)在[0,1]上的上界为T(m),求T(m)的范围.

分析 (1)把a=-$\frac{1}{2}$代入函数的表达式,得出函数的单调区间,结合有界函数的定义进行判断;
(2)由题意知,|f(x)|≤4对x∈[0,+∞)恒成立.令t=$(\frac{1}{3})^{x}$,则-(t+$\frac{5}{t}$)≤a≤$\frac{3}{t}$-t对t∈(0,1]恒成立,设s(t)=-(t+$\frac{5}{t}$),h(t)=$\frac{3}{t}$-t,求出单调区间,得到函数的最值,从而求出a的取值范围;
(3)利用分离常数把函数g(x)变形,分类求出函数g(x)的值域得答案.

解答 解:(1)当a=-$\frac{1}{2}$时,f(x)=1+$\frac{1}{2}$•${(\frac{1}{3})^x}$+${(\frac{1}{9})^x}$,令t=$(\frac{1}{3})^{x}$,
∵x<0,∴t>1,y=1-$\frac{1}{2}$t+t2
函数y=1-$\frac{1}{2}$t+t2在(1,+∞)上单调递增,
∴y>$\frac{3}{2}$,即f(x)在(-∞,1)的值域为($\frac{3}{2}$,+∞),
故不存在常数M>0,使|f(x)|≤M成立,
∴函数f(x)在(-∞,0)上不是有界函数;   
(2)由题意知,|f(x)|≤4对x∈[0,+∞)恒成立.
即:-4≤f(x)≤4,令t=$(\frac{1}{3})^{x}$,
∵x≥0,∴t∈(0,1],
∴-(t+$\frac{5}{t}$)≤a≤$\frac{3}{t}$-t对t∈(0,1]恒成立,
∴$[-(t+\frac{5}{t})]_{max}≤a≤(\frac{3}{t}-t)_{min}$,
设s(t)=-(t+$\frac{5}{t}$),h(t)=$\frac{3}{t}-t$,由t∈(0,1],
由于s(t)在t∈(0,1]上递增,h(t)在t∈(0,1]上递减,
s(t)在t∈(0,1]上的最大值为s(1)=-6,
h(t)在[1,+∞)上的最小值为h(1)=2.
∴实数a的取值范围为[-6,2];
(3)当x=0时,g(x)=1;
当x≠0时,g(x)=$\frac{1-m•{x}^{2}}{1+m•{x}^{2}}$=$\frac{1+m{x}^{2}-2m{x}^{2}}{1+m{x}^{2}}=1-\frac{2m{x}^{2}}{1+m{x}^{2}}$=$1-\frac{2m}{\frac{1}{{x}^{2}}+m}$(0<x≤1),
∵0<x≤1,∴0≤x2≤1,则$\frac{1}{{x}^{2}}≥1$,由m>-1,
∴$\frac{1}{{x}^{2}}+m>0$,
则当-1<m≤0时,0<$\frac{1}{{x}^{2}}+m$≤1,$\frac{1}{\frac{1}{{x}^{2}}+m}≥1$,1-$\frac{2m}{\frac{1}{{x}^{2}}+m}$≥1+2m,g(x)在[0,1]上无上界;
当m>0时,$\frac{1}{{x}^{2}}+m$>1,0<$\frac{1}{\frac{1}{{x}^{2}}+m}$<1,1-2m<1-$\frac{2m}{\frac{1}{{x}^{2}}+m}$<1,
∴T(m)在[0,1]上的上界T(m)≥1.
综上,当-1<m≤0时,g(x)在[0,1]上无上界;m>0时,T(m)在[0,1]上的上界T(m)≥1.

点评 本题是新定义题,考查了函数的值域问题及函数的单调性,函数的最值问题,体现了数学转化思想方法及分类讨论的数学思想方法,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{f_1}(x),x∈[{0,\frac{1}{2}})\\{f_2}(x),x∈[{\frac{1}{2},1}]\end{array}$,其中f1(x)=-2(x-$\frac{1}{2}$)2+1,f2(x)=-2x+2.
(1)在如图直角坐标系中画出y=f(x)的图象;
(2)写出y=f(x)的单调增区间;
(3)若x0∈[0,$\frac{1}{2}}$),x1=f(x0),f(x1)=x0.求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆6x2+y2=6的长轴端点坐标为(  )
A.(-1,0),(1,0)B.(-6,0),(6,0)C.$(-\sqrt{6},0),(\sqrt{6},0)$D.$(0,-\sqrt{6}),(0,\sqrt{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若数列{an}中的项都满足a2n-1=a2n<a2n+1(n∈N*),则称{an}为“阶梯数列”.
(1)设数列{bn}是“阶梯数列”,且b1=1,b2n+1=9b2n-1(n∈N*),求b2016
(2)设数列{cn}是“阶梯数列”,其前n项和为Sn,求证:{Sn}中存在连续三项成等差数列,但不存在连续四项成等差数列;
(3)设数列{dn}是“阶梯数列”,且d1=1,d2n+1=d2n-1+2(n∈N*),记数列{$\frac{1}{{d}_{n}{d}_{n+2}}$}的前n项和为Tn,问是否存在实数t,使得(t-Tn)(t+$\frac{1}{{T}_{n}}$)<0对任意的n∈N*恒成立?若存在,请求出实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数a≠0,函数f(x)=$\left\{\begin{array}{l}2x+a,x<1\\-x-2a,x≥1\end{array}$,若f(1-a)=f(1+a),则a的值为(  )
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.-$\frac{3}{4}$或-$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知关于x的方程|2x-a|=1有两个不相等的实数解,则实数a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义域为D,若对于任意的x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设f(x)在[0,1]上为非减函数,且满足以下三个条件:
(1)f(0)=0;(2)f(${\frac{x}{3}}$)=$\frac{1}{2}$f(x);
(3)f(1-x)=1-f(x).
则f(1)+f(${\frac{1}{2}}$)+f(${\frac{1}{3}}$)+f(${\frac{1}{6}}$)+f(${\frac{1}{7}}$)+f(${\frac{1}{8}}$)=$\frac{11}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,棱长为a的正方体ABCD-A1B1C1D1中,点M,N,E分别是棱A1B1,A1D1,C1D1的中点.
(1)过AM作一平面,使其与平面END平行(只写作法,不需要证明);
(2)在如图的空间直角坐标系中,求直线AM与平面BMND所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知曲线C1:(x-1)2+y2=1与曲线C2:y(y-mx-m)=0,则曲线C2恒过定点(-1,0);若曲线C1与曲线C2有4个不同的交点,则实数m的取值范围是(-$\frac{\sqrt{3}}{3}$,0)
∪(0,$\frac{\sqrt{3}}{3}$) 

查看答案和解析>>

同步练习册答案