精英家教网 > 高中数学 > 题目详情
(2012•宝鸡模拟)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如下图所示:则函数f(x)的解析式为
f(x)=
2
sin(
π
8
x+
π
4
f(x)=
2
sin(
π
8
x+
π
4
分析:由图象得到f(x)的最大值为
2
,周期为16,且过点(2,
2
)
,然后利用三角函数的周期个数求出函数的解析式.
解答:解:由图象得到f(x)的最大值为
2
,周期为16,且过点(2,
2
)

所以A=
2

T=
ω
=16

所以ω=
π
8

将点(2,
2
)
代入f(x)得到φ=
π
4

所以f(x)=
2
sin(
π
8
x+
π
4
)

故答案为f(x)=
2
sin(
π
8
x+
π
4
)
点评:本题是基础题,考查由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)已知实数x,y满足不等式组
y≤x
x+y≤2
y≥0
,则目标函数z=x+3y的最大值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)若函数f(x)=
2x,(x<3)
2x-m,(x≥3)
,且f(f(2))>7,则实数m的取值范围为
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=1,a=1,c=
3
,求b值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)已知等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的通项公式an等于(  )

查看答案和解析>>

同步练习册答案