精英家教网 > 高中数学 > 题目详情
已知A、B是椭圆
x2
2
+y2=1上的两点,且
AF
FB
,其中F为椭圆的右焦点.
(1)求实数λ的取值范围;
(2)在x轴上是否存在一个定点M,使得
MA
MB
为定值?若存在,求出定值和定点坐标;若不存在,说明理由.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)当直线AB与x轴重合时,λ=3±2
2
.当直线AB不与x轴重合时,设AB:x=my+1,代入椭圆方程,并整理得(2+m2)y2+2my-1=0.设A(x1,y1),B(x2,y2),由根与系数的关系结合已知条件能求出实数λ的取值范围.
(2)设M(a,0),由
MA
MB
=(x1-a)(x2-a)+y1y2
=
(2a2-4a+1)+(a2-2)m2
2+m2
为定值,解得a=
5
4
.由此能推导出存在定点M(
5
4
,0)
,使得
MA
MB
为定值-
7
16
解答: 解:(1)由已知条件知:直线AB过椭圆右焦点F(1,0).
当直线AB与x轴重合时,λ=3±2
2

当直线AB不与x轴重合时,
设AB:x=my+1,代入椭圆方程,并整理得(2+m2)y2+2my-1=0.
设A(x1,y1),B(x2,y2),
由根与系数的关系得y1+y2=
-2m
2+m2
y1y2=
-1
2+m2

所以
(y1+y2)2
y1y2
=
-4m2
2+m2
∈(-4,0]

又由
AF
FB
,得-y1=λy2
所以
(y1+y2)2
y1y2
=
y12+y22+2y1y2
y1y2
=-λ-
1
λ
+2∈(-4,0]

解之得3-2
2
<λ<3+2
2

综上,实数λ的取值范围是[3-2
2
,3+2
2
]
.(7分)
(2)设M(a,0),
MA
MB
=(x1-a)(x2-a)+y1y2

=(my1+1-a)(my2+1-a)+y1y2
=(1+m2)y1y2+m(1-a)(y1+y2)+(1-a)2
=-
1+m2
2+m2
-
2m2(1-a)
2+m2
+(1-a)2

=
(2a2-4a+1)+(a2-2)m2
2+m2
为定值,
所以2a2-4a+1=2(a2-2),解得a=
5
4

故存在定点M(
5
4
,0)
,使得
MA
MB
为定值-
7
16

经检验,当AB与x轴重合时也成立,
∴存在定点M(
5
4
,0)
,使得
MA
MB
为定值-
7
16
.(13分)
点评:本题考查实数的取值范围的求法,考查是否存在定点使得向量的数量积为定值的判断与求法,解题时要认真审题,注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某商品进价每个80元,零售价每个100元,为促进销售,拟采用买一件商品赠送顾客一件价值1元的小礼品的方法,结果在单位销售周期内销量增加10%,实践表明,在一定范围内,礼品价值为(n+1)元(n∈N)时比礼品价值为n元时销售量增加10%,请你为商品设计礼品价值,以求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(-x2-mx-m)e-x(m∈R).
(Ⅰ)求f′(x);
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期为T=6π,且f(2π)=2
(1)求ω和A的值;
(2)设α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
;求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A,B,C的对边分别为a,b,c,满足A=B+30°.
(1)若c=1,b=sinB,求B.
(2)若a2+c2-
1
2
ac=b2,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,sin(C-
π
6
)=cosC
(Ⅰ)求
a+b
sinA+sinB
的值;
(Ⅱ)若a+b=ab,求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业通过调查问卷(满分50分)的形式对本企业900名员土的工作满意度进行调查,并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:
47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49
37 35 34 43 46 36 38 40 39 32 48 33 40 34    
(1)根据以上数据,估计该企业得分大于45分的员工人数;
(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为‘满意’,否则为“不满意”,请完成下列表格:
  “满意”的人数 “不满意”人数 合计
    16
    14
合计     30
〔3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?参考数据:
P(K2≥k) 0.10 0.050 0.025 0.010 0.001
k 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x=2cosθ+2
y=2sinθ-2
(θ为参数),直线l的极坐标方程为ρsinθ+3=0(以直角坐标原点O为极点,x轴非负半轴为极轴建立极坐标系),则C被l截得弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示,则直方图中x的值为
 

查看答案和解析>>

同步练习册答案