精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求圆的普通方程和直线的直角坐标方程;

(2)若直线与圆交于两点,是圆上不同于两点的动点,求面积的最大值.

【答案】(1)(2)

【解析】分析:(1)直接利用参数方程与普通方程的互化和极坐标与直角坐标的互化公式,即可把参数方程、极坐标方程化为普通方程和直角坐标方程;

(2)利用(1)的结论,再利用点到直线的距离公式,即可求解结果.

详解:解:(1)圆的普通方程为直线的方程可化为

即直线的直角坐标方程为.

(2)圆心的距离为

所以

又因为圆上的点到直线的距离的最大值为

所以

面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.

(1)求异面直线AD1EC所成角的大小;

(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点CtRt0)为圆心的圆与x轴交于点O和点A,与y轴交于点O和点B,其中O为原点.

1)求证:OAB的面积为定值;

2)设直线y=-2x4与圆C交于点MN,若OMON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学随机选取了名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.

(Ⅰ)求的值及样本中男生身高在(单位: )的人数;

假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;

(Ⅲ)在样本中,从身高在(单位: )内的男生中任选两人,求这两人的身高都不低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.

①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.

参考数据:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0)的离心率为,直线l:x+2y=4与椭圆有且只有一个交点T.

(I)求椭圆C的方程和点T的坐标;

)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断是否为定值,若是请求出定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱(底面为正三角形,侧棱和底面垂直)的所有棱长都为2的中点,O中点.

1)求证:平面.

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,总存在实数,使成立,则称关于参数的不动点.

1)当时,求关于参数的不动点;

2)若对任意实数,函数恒有关于参数两个不动点,求的取值范围;

3)当时,函数上存在两个关于参数的不动点,试求参数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某射击运动员每次击中目标的概率都是,现采用随机模拟的方法估计该运动员射击次至多击中次的概率:先由计算器产生之间取整数值的随机数,指定表示没有击中目标,表示击中目标,因为射击次,故以每个随机数为一组,代表射击次的结果.经随机模拟产生了如下组随机数:

5727 0293 7140 9857 0347 4373 8636 9647 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 6710 4281

据此估计,射击运动员射击4次至多击中3次的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案