精英家教网 > 高中数学 > 题目详情
5.四个人各写一张贺卡,放在一起,再各取一张不是自己写的贺卡,共有9种不同的方法.

分析 根据题意,依次分析每个人可能抽取贺卡的结果数目:第一个人有3种结果,被拿走贺卡的人是第二个人有3种结果,剩下的两个人只有一种结果,根据分步计数原理得到结果.

解答 解:假设有甲、乙、丙、丁4人各写一张贺卡,
甲先去拿一个贺卡,有3种方法,
假设甲拿的是乙写的贺卡,
接下来让乙去拿,乙此时也有3种方法,
剩下两人中必定有一人自己写的贺卡还没有发出去,
这样两人只有一种拿法
总的拿法为 3×3×1=9种
故答案为:9.

点评 本题考查排列组合及简单的计数问题,本题解题的关键是看出前两个人都抽取贺卡以后,第三个和第四个只有一种结果,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数$y=\frac{1}{2x-1}+\sqrt{x+1}+\root{3}{3x-1}$的定义域为$\left\{{x|x≥-1且x≠\frac{1}{2}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知离心率为$\frac{\sqrt{3}}{2}$的椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)过点P(4,1).
(1)求椭圆方程;
(2)不垂直于坐标轴的直线l交椭圆于A,B两点,直线PA与直线PB斜率之和为-2,求证:直线AB恒与x轴交于定点M,并求出点M坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z满足(1+i)z=2-i,则z=(  )
A.-$\frac{1}{2}$-$\frac{3}{2}$iB.$\frac{3}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}+\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若数列{an}满足${a_1}•{a_2}•{a_3}…{a_n}={n^2}+3n+2$,则a4=$\frac{3}{2}$,an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n>1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y满足$\left\{\begin{array}{l}x-y≥0\\ x+y-1≤0\\ y≥-1\end{array}\right.$,则z=2x+y(  )
A.有最小值-3,最大值3B.有最小值-3,无最大值
C.最小值-3,有最大值$\frac{3}{2}$D.无最小值,有最大值$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=Asin(ωx-$\frac{π}{6}$)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)求函数y=f(x)的单调增区间;
(3)设α∈(0,$\frac{π}{2}$),则f($\frac{α}{2}$)=2,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}满足a1=2,a4=4(a3-a2),数列{bn}满足bn=-1+2log2an
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知平行四边形ABCD,O是平行四边形ABCD所在平面内任意一点,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则向量$\overrightarrow{OD}$等于(  )
A.$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$B.$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$C.$\overrightarrow a$-$\overrightarrow b$+$\overrightarrow c$D.$\overrightarrow a$-$\overrightarrow b$-$\overrightarrow c$

查看答案和解析>>

同步练习册答案