精英家教网 > 高中数学 > 题目详情
15.已知平行四边形ABCD,O是平行四边形ABCD所在平面内任意一点,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则向量$\overrightarrow{OD}$等于(  )
A.$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$B.$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$C.$\overrightarrow a$-$\overrightarrow b$+$\overrightarrow c$D.$\overrightarrow a$-$\overrightarrow b$-$\overrightarrow c$

分析 根据向量的加减的几何意义即可求出.

解答 解:∵O是平行四边形ABCD所在平面内任意一点,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则
∴$\overrightarrow{OD}$=$\overrightarrow{OA}$+$\overrightarrow{AD}$=$\overrightarrow{OA}$+$\overrightarrow{BC}$=$\overrightarrow{OA}$+$\overrightarrow{OC}$-$\overrightarrow{OB}$=$\overrightarrow{a}+\overrightarrow{c}-\overrightarrow{b}$,
故选:C.

点评 本题考查了向量的加减的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.四个人各写一张贺卡,放在一起,再各取一张不是自己写的贺卡,共有9种不同的方法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若4x+2x+1+m>1对一切实数x成立,则实数m的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对于函数y=f(x),定义域为D=[-2,2],以下命题正确的是(只要求写出命题的序号)①③④
①若函数y=f(x)在D上具有单调性,且f(0)>f(1),则y=f(x)是D上的递减函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f(x)是D上的递减函数,对任意x∈D,使得f(x)-m≥0恒成立,则必须m≤f(2);
④若f(x)是D上的递增函数,存在x0∈D,使得f(x0)-m≥0成立,则必须m≤f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了缓解二诊备考压力,双流中学高三某6个班级从双流区“棠湖公园”等6个不同的景点中任意选取一个进行春游活动,其中1班、2班不去同一景点且均不去“棠湖公园”的不同的安排方式有多少种(  )
A.$A_5^2{6^4}$B.$C_5^2{6^4}$C.$A_5^2A_4^4$D.$C_5^2A_4^4$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC中,2bcosB=acosC+ccosA
(1)求角B的大小;
(2)求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y=x2上存在两个不同的点M,N关于直线l:y=-kx+$\frac{9}{2}$对称,求k的取值范围(-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PD⊥平面ABCD,M是PC的中点,且PD=2
(1)求证:AP∥平面MBD; 
(2)求证:DM⊥BC;
(3)求三棱锥M-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.
阅读上面程序,求出y的值(写出运算过程).

查看答案和解析>>

同步练习册答案