精英家教网 > 高中数学 > 题目详情
若抛物线上一点到焦点的距离为4,则点的横坐标为      

试题分析:设点的横坐标为,抛物线的准线方程为,由抛物线的定义知
,解得.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知A(-5,0),B(5,0),动点P满足||,|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足||·||=,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知定点A(-2,0)、B(2,0),异于A、B两点的动点P满足,其中k1、k2分别表示直线AP、BP的斜率.

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若N是直线x=2上异于点B的任意一点,直线AN与(I)中轨迹E交予点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),点C(1,0),求证:|CM|·|CN| 为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,曲线上任意一点分别与点连线的斜率的乘积为
(Ⅰ)求曲线的方程;
(Ⅱ)设直线轴、轴分别交于两点,若曲线与直线没有公共点,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为半圆,为半圆直径,为半圆圆心,且为线段的中点,已知,曲线点,动点在曲线上运动且保持的值不变.
(I)建立适当的平面直角坐标系,求曲线的方程;
(II)过点的直线与曲线交于两点,与所在直线交于点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)抛物线y2=4x的焦点到双曲线的渐近线的距离是(  )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,直线L的方程为x-y+4=0,曲线C的参数方程
(1)求曲线C的普通方程;
(2)设点Q是曲线C上的一个动点,求它到直线L的距离的最小值.

查看答案和解析>>

同步练习册答案