科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测二理科数学试卷(解析版) 题型:填空题
若等差数列
和等比数列
的首项均为1,且公差
,公比
,则集合
的元素个数最多有 个.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高三下学期4月周练文科数学试卷(解析版) 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.
![]()
(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高三下学期4月周练文科数学试卷(解析版) 题型:填空题
已知
,
是空间中两条不同的直线,
,
,
是空间中三个不同的平面,则
下列命题正确的序号是 .
①若
,
,则
; ②若
,
,则
;
③若
,
,则
; ④若
,
,则
.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省徐州市高三第三次质量检测理科数学试卷(解析版) 题型:解答题
根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率
与日产量
(件)之间近似地满足关系式
(日产品废品率![]()
).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润
日正品赢利额
日废品亏损额)
(1)将该车间日利润
(千元)表示为日产量
(件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高考模拟考试理科数学试卷(解析版) 题型:解答题
如图,在四棱柱
中,已知平面
平面
且
,
.
(1)求证:![]()
(2)若
为棱
上的一点,且
平面
,求线段
的长度
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com