【题目】如图,在四棱锥
中,底面
为正方形,
平面
,
为
的中点,
交
于点
,
为
的重心.
![]()
(1)求证:
平面
;
(2)若
,点
在线段
上,且
,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】已知函数
(a,b
R).
(1)当a=b=1时,求
的单调增区间;
(2)当a≠0时,若函数
恰有两个不同的零点,求
的值;
(3)当a=0时,若
的解集为(m,n),且(m,n)中有且仅有一个整数,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
上任意一点到两焦点
距离之和为
,离心率为
.
(1)求椭圆的标准方程;
(2)若直线
的斜率为
,直线
与椭圆C交于
两点.点
为椭圆上一点,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱ABC—A1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.
![]()
(1)求证:EF∥平面ABC;
(2)BB1⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求
的最小值
;
(2)是否存在实数
,
同时满足下列条件:①
;②当
的定义域为
时,其值域为
.若存在,求出
,
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
-x2+ef′(
)x.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若存在x1,x2(x1<x2),使得f(x1)+f(x2)=1,求证:x1+x2<2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com