精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=-x2+ef′(x

(Ⅰ)求fx)的单调区间;

(Ⅱ)若存在x1x2x1x2),使得fx1+fx2=1,求证:x1+x22

【答案】(Ⅰ)在R上单调递增;(Ⅱ)见解析

【解析】

(I)f′(x)=e2(x-1)-2x+ef′().令x=,则f′()=-1+ef′(),解得f′(),进而得出函数f(x)的单调性.

(II)由(I)可得:函数f(x))=-x2+x在R上单调递增.要证明:x1+x2<2x1<2-x2f(x1)<f(2-x2),又f(x1)+f(x2)=1,因此f(x1)<f(2-x2)1-f(x2)<f(2-x2),即f(x2)+f(2-x2)-1>0,f(1)=-1+1=,则x1<1<x2.令g(x)=f(2-x)+f(x)-1=+-2x2+4x-2,x>1,g(1)=0.利用导数研究其单调性即可证明结论.

If′(x=e2x-1-2x+ef′().

x=,则f′(=-1+ef′(),解得f′(=

f′(x=e2x-1-2x+1fx=2e2x-1-2=2ex-1+1)(ex-1-1),

单调递增;单调递减,

x=1时,函数f′(x)取得极小值即最小值,∴f′(x)≥f′(1=0

∴函数fx)在R上单调递增.

II)由(I)可得:函数fx=-x2+xR上单调递增.

要证明:x1+x22x12-x2fx1)<f2-x2),

fx1+fx2=1,因此fx1)<f2-x21-fx2)<f2-x2),

fx2+f2-x2-10f1==,则x11x2

gx=f2-x+fx-1=-2-x2+2-x+-x2+x=+-2x2+4x-2x1g1=0g′(x=-e21-x+e2x-1-4x+4

gx=2e21-x+2e2x-1-4≥0,∴g′(x)在(1,+∞)上单调递增.

g′(x)>g′(1=0,∴函数gx)在(1,+∞)上单调递增.

gx)>g1=0,因此结论x1+x22成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,平面的中点,于点的重心.

(1)求证:平面

(2)若,点在线段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数是总人数的一半,“对性能满意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有选择了退货.

(1)请完成下面的列联表,并判断是否有的把握认为“客户购买产品与对产品性能满意之间有关”.

对性能满意

对性能不满意

合计

购买产品

不购买产品

合计

(2)企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后安排了抽奖环节,共有4张奖券,奖券上分别印有200元、400元、600元和800元字样,抽到奖券可获得相应奖金.6位客户有放回的进行抽取,每人随机抽取一张奖券,求6位客户中购买产品的客户人均所得奖金不少于500元的概率.

附:,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾)
1)甲、乙两人必须跑中间两棒;
2)若甲、乙两人只有一人被选且不能跑中间两棒;
3)若甲、乙两人都被选且必须跑相邻两棒.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为轴,直线轴于点,为椭圆上的动点,的面积的最大值为1.

(1)求椭圆的方程;

(2)过点作两条直线与椭圆分别交于且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为轴,直线轴于点,为椭圆上的动点,的面积的最大值为1.

(1)求椭圆的方程;

(2)过点作两条直线与椭圆分别交于且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于原点对称,其中为常数.

1)求的值;

2)当时, 恒成立,求实数的取值范围;

3若关于的方程上有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】画糖人是一种以糖为材料在石板上进行造型的民间艺术.某糖人师傅在公园内画糖人,每天卖出某种糖人的个数与价格相关,其相关数据统计如下表:

每个糖人的价格(元)

9

10

11

12

13

卖出糖人的个数(个)

54

50

46

43

39

(1)根据表中数据求关于的回归直线方程;

(2)若该种造型的糖人的成本为2元/个,为使糖人师傅每天获得最大利润,则该种糖人应定价多少元?(精确到1元)

参考公式:回归直线方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

同步练习册答案