精英家教网 > 高中数学 > 题目详情
已知一个圆C:x2+y2+4x-12y+39=0和一条直线L:3x-4y+5=0,求圆C关于直线L的对称的圆的方程.
分析:求出已知圆的圆心,设出对称圆的圆心利用中点在直线上,弦所在直线与圆心连线垂直,得到两个方程,求出圆心坐标,然后求出方程.
解答:解:已知圆方程可化成(x+2)2+(y-6)2=1,它的圆心为P(-2,6),
半径为1设所求的圆的圆心为P'(a,b),
则PP'的中点(
a-2
2
b+6
2
)
应在直线L上,
故有3(
a-2
2
)-4(
b+6
2
)+5=0
,即3a-4b-20=0(1)
又PP'⊥L,故有
b-6
a+2
3
4
=-1
,即4a+3b-10=0(2)
解(1),(2)所组成的方程,得a=4,b=-2
由此,所求圆的方程为(x-4)2+(y+2)2=1,即:
x2+y2-8x+4y+19=0.
点评:本题是基础题,考查圆关于直线对称的圆的方程,本题的关键是垂直、平分关系的应用,这是解决这一类问题的常用方法,需要牢记.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个圆C:x2+y2-6x-6y-18=0和一条直线l:3x-y-1=0,求圆C关于直线l对称的圆C'的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个圆C:x2+y2+4x-12y+39=0和一条直线L:3x-4y+5=0,求圆C关于直线L的对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广西桂林中学高二(上)期中数学试卷(解析版) 题型:解答题

已知一个圆C:x2+y2-6x-6y-18=0和一条直线l:3x-y-1=0,求圆C关于直线l对称的圆C'的方程.

查看答案和解析>>

科目:高中数学 来源:1985年全国统一高考数学试卷(文科)(解析版) 题型:解答题

已知一个圆C:x2+y2+4x-12y+39=0和一条直线L:3x-4y+5=0,求圆C关于直线L的对称的圆的方程.

查看答案和解析>>

同步练习册答案