精英家教网 > 高中数学 > 题目详情

【题目】l1 , l2 , l3是空间三条不同的直线,则下列命题正确的是(
A.l1⊥l2 , l2⊥l3l1∥l3
B.l1⊥l2 , l2∥l3l1⊥l3
C.l1∥l2∥l3l1 , l2 , l3共面
D.l1 , l2 , l3共点l1 , l2 , l3共面

【答案】B
【解析】解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A错;对于B,∵l1⊥l2 , ∴l1 , l2所成的角是90°,又∵l2∥l3∴l1 , l3所成的角是90°∴l1⊥l3 , B对;
对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;
对于D,例如三棱锥的三侧棱共点,但不共面,故D错.
故选B.
通过两条直线垂直的充要条件两条线所成的角为90°;判断出B对;通过举常见的图形中的边、面的关系说明命题错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】命题“x∈R,x2+1≥1”的否定是(
A.x∈R,x2+1<1
B.x∈R,x2+1≤1
C.x∈R,x2+1<1
D.x∈R,x2+1≥1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=loga(2﹣ax)在(﹣1,1)上是x的减函数,则a的取值范围是(
A.(0,2)
B.(1,2)
C.(1,2]
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点P(1,﹣2)且垂直于直线x﹣3y+2=0的直线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ax2+1(a>0,a≠1)的图象必过( )
A.(0,1)
B.(2,2)
C.(2,0)
D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xn+ax1(n∈Z,a>0且a≠1)的图象必过定点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x+1)=x2﹣1,则(
A.f(x)=x2﹣2x
B.f(x)=x2+2x
C.f(x)=x2﹣4x
D.f(x)=x2+4x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是 . (用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)对任意两个不相等实数a、b,且a<b总有f(a)<f(b)成立,则必有(
A.f(x)先增加后减少
B.f(x)先减少后增加
C.f(x)在R上是增函数
D.f(x)在R上是减函数

查看答案和解析>>

同步练习册答案