精英家教网 > 高中数学 > 题目详情

【题目】如图,已知AB为⊙O的直径,C,F为⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.求证:DE2=DADB.

【答案】证明:连接OF.
因为DF切⊙O于F,所以∠OFD=90°.
所以∠OFC+∠CFD=90°.
因为OC=OF,所以∠OCF=∠OFC.
因为CO⊥AB于O,所以∠OCF+∠CEO=90°.
所以∠CFD=∠CEO=∠DEF,所以DF=DE.
因为DF是⊙O的切线,所以DF2=DBDA.
所以DE2=DBDA.

【解析】欲证DE2=DBDA,由于由切割线定理得DF2=DBDA,故只须证:DF=DE,也就是要证:∠CFD=∠DEF,这个等式利用垂直关系通过互余角的转换即得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】要制作一个容积为8m3 , 高为2m的无盖长方体容器,若容器的底面造价是每平方米200元,侧面造型是每平方米100元,则该容器的最低总造价为(
A.1200元
B.2400元
C.3600元
D.3800元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=1,BC=2,半圆O以BC为直径,平面ABCD垂直于半圆O所在的平面,P为半圆周上任意一点(与B、C不重合).

(1)求证:平面PAC⊥平面PAB;
(2)若P为半圆周中点,求此时二面角P﹣AC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(xy)=f(x)+f(y).

(1) xyR,求f(1),f(-1)的值; (2)xyR,判断yf(x)的奇偶性;

(3)若函数f(x)在其定义域(0,+∞)上是增函数,f(2)=1,f(x)+f(x-2)≤3,x的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在△ABC中,已知AB=15,BC=14,CA=13.将△ABC沿BC边上的高AD折成一个如图②所示的四面体A﹣BCD,使得图②中的BC=11.

(1)求二面角B﹣AD﹣C的平面角的余弦值;
(2)在四面体A﹣BCD的棱AD上是否存在点P,使得 =0?若存在,请指出点P的位置;若不存在,请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市“招手即停”公共汽车的票价按下列规则制定:

5公里以内(含5公里),票价2元;

5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意.

(1)写出票价与里程之间的函数解析式;

(2)根据(1)写出的函数解析式试画出该函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个随机变量x,y的取值表为

x

0

1

3

4

y

2.2

4.3

4.8

6.7

若x,y具有线性相关关系,且 = x+2.6,则下列四个结论错误的是(
A.x与y是正相关
B.当x=6时,y的估计值为8.3
C.x每增加一个单位,y增加0.95个单位
D.样本点(3,4.8)的残差为0.56

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点与点的距离比它的直线的距离小2

1)求点的轨迹方程;

2是点轨迹上互相垂直的两条弦,问:直线是否经过轴上一定点,若经过,求出该点坐标;若不经过,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数f(x)=的定义域为集合A,函数g(x)=在(0,+∞)上为增函数时k的取值集合为B,函数h(x)=x2+2x+4的值域为集合C.

(1)求集合A,B,C;

(2)求集合A∪(RB),A∩(B∪C).

查看答案和解析>>

同步练习册答案