精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x+1,g(x)=x,x∈R,数列{an},{bn}满足条件:数学公式
(1)求数列{an},{bn}的通项公式;
(2)令数学公式是数列{Cn}的前n项和,求使数学公式成立的最小的n值.

解:(1)由题意得2bn+1=bn+1,∴bn+1+1=2bn+2=2(bn+1)…(2分)
又∵a1=2b1+1=1,∴b1=0,b1+1=1≠0…(3分)
故数列{bn+1}是以1为首项,2为公比的等比数列…(4分)

…(6分)
(2)由(1)可知
…(8分)
…(10分)
,得2n+1>2013,解得n≥10.
∴满足条件的n的最小值为10.…(12分)
分析:(1)由题意得2bn+1=bn+1,两边同加1,可得数列{bn+1}是以1为首项,2为公比的等比数列,从而可求数列的通项;
(2)确定数列{Cn}的通项,利用裂项法求数列的和,利用,即可求得最小的n值.
点评:本题考查数列与函数的关系,考查数列递推式,考查裂项法求数列的和,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案