在中,角、、所对应的边为、、.
(1)若,求的值;
(2)若,且的面积,求的值.
(1);(2).
解析试题分析:(1)在等式中利用差角公式化简求出的值,从而求出角的值;(2)解法1是先求出的值,借助三角形的面积公式得出与之间的等量关系,再利用余弦定理最终得到与的等量关系,最后利用正弦定理求出的值;解法2是是先求出的值,借助三角形的面积公式得出与之间的等量关系,再利用余弦定理最终得到与的等量关系,通过观察三者之间的等量关系发现、、三者满足勾股定理,最后在直角三角形中求出的值;解法3是先求出的值,借助三角形的面积公式得出与之间的等量关系,再利用余弦定理最终得到与的等量关系,最后利用三角形的面积公式求出的值;解法4是先求出的值,借助三角形的面积公式得出与之间的等量关系,从而得出与的等量关系,并利用得出和的值,最后利用求出的值.
试题解析:(1)由,得,
,,,
,;
(2)解法1:,,,
由,得,
由余弦定理得:,,
由正弦定理得:,即,.
解法2:,,,
由得,
由余弦定理得:,,
,是直角三角形,角为直角,;
解法3:,,,
由得
由余弦定理得:,,
又,得,;
解法4:,,,
由得,
由正弦定理得:
科目:高中数学 来源: 题型:解答题
如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.
(1)若C是半径OA的中点,求线段PC的长;
(2)设,求面积的最大值及此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知a,b,c分别为ABC的三个内角A,B,C的对边,向量=(sinA,1),=(cosA,),且//.
(I)求角A的大小;
(II)若a=2,b=2,求ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=2cos2x―sin(2x―).
(Ⅰ)求函数的最大值,并写出取最大值时x的取值集合;
(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=,b+c=2,求实数a的最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com