分析 (1)由cosA=$\frac{12}{13}$,sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{5}{13}$,由三角形的面积公式可知:S=$\frac{1}{2}$bcsinA即可求得△ABC的面积;
(2)由bc=156,c-b=1,即可求得b和c的值,由余弦定理可得a2=b2+c2-2bccosA,代入即可求得a的值.
解答 解:(1)由cosA=$\frac{12}{13}$,由同角三角函数的基本关系可知:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{5}{13}$,
∵bc=156.
∴△ABC的面积S,S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×156×$\frac{5}{13}$=30,
△ABC的面积30; …(6分)
(2)由题意可知:$\left\{\begin{array}{l}{bc=156}\\{c-b=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{b=12}\\{c=13}\end{array}\right.$,
∴由余弦定理可知:a2=b2+c2-2bccosA,…(9分)
=122+132-2×12×13×$\frac{12}{13}$,
=25,
∴a=5,
∴a的值5.
点评 本题考查正弦定理及余弦定理的综合应用,考查同角三角函数的基本关系,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $3\sqrt{7}$ | B. | $2\sqrt{6}$ | C. | $5\sqrt{2}$ | D. | $2\sqrt{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2≤x<1} | B. | {x|-3<x<2} | C. | {x|-2<x<2} | D. | {x|-3≤x≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“?x0∈R,x02+x0+1<0”的否定是“?x∈R,x2+x+1>0” | |
| B. | 命题“p∨q为真”是命题“p∧q为真”的充分不必要条件 | |
| C. | 命题“若am2<bm2则a<b”是真命题 | |
| D. | 命题“若sinx=siny则x=y”的逆否命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com