精英家教网 > 高中数学 > 题目详情
已知△ABC中,AC=1,∠ABC=
3
,∠BAC=x
,记f(x)=
AB
BC

(1)求f(x)解析式及定义域;
(2)设g(x)=6m•f(x)+1,x∈(0,
π
3
)
,是否存在正实数m,使函数g(x)的值域为(1,
3
2
]
?若存在,请求出m的值;若不存在,请说明理由.
(1)由正弦定理有:
BC
sinx
=
1
sin
3
=
AB
sin(
π
3
-x)

BC=
1
sin
3
sinx,AB=
sin(
π
3
-x)
sin
3

f(x)=
AB
BC
=
4
3
sinx•sin(
π
3
-x)•
1
2
=
2
3
(
3
2
cosx-
1
2
sinx)sinx
=
1
3
sin(2x+
π
6
)-
1
6
(0<x<
π
3
)

(2)g(x)=6mf(x)+1=2msin(2x+
π
6
)-m+1(0<x<
π
3
)

假设存在实数m符合题意,∵x∈(0,
π
3
)
,∴
π
6
<2x+
π
6
6
,则sin(2x+
π
6
)∈(
1
2
,1]

因为m>0时,g(x)=2msin(2x+
π
6
)-m+1
的值域为(1,m+1].
又g(x)的值域为(1,
3
2
]
,解得m=
1
2

∴存在实数m=
1
2
,使函数f(x)的值域恰为(1,
3
2
]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,AC=1,∠ABC=
3
,设∠BAC=x,记f(x)=AB.
(Ⅰ)求f(x)的解析式及定义域;
(Ⅱ)D是AB边的中点,若f(x)=
3
3
,求CD长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•闵行区二模)已知△ABC中,AC=2
2
,BC=2,则角A的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AC=BC=2,∠ACB=120°,D为AB的中点,E,F分别在线段AC,BC上,且EF∥AB,EF交CD于G,把△ADC沿CD折起,如图所示,

(1)求证:E1F∥平面A1BD;
(2)当二面角A1-CD-B为直二面角时,是否存在点F,使得直线A1F与平面BCD所成的角为60°,若存在求CF的长,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AC=1,∠ABC=
3
.设∠BAC=x,记f(x)=AB.
(Ⅰ)求f(x)的解析式及定义域;
(Ⅱ)设g(x)=6m•f(x)+1,求实数m,使函数g(x)的值域为(1,
3
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知△ABC中,AC=1,∠ABC=
3
,设∠BAC=x,并记f(x)=
AB
BC

(1)求函数f(x)的解析式及其定义域;
(2)设函数g(x)=6mf(x)+1,若函数g(x)的值域为(1,
5
4
]
,试求正实数m的值.

查看答案和解析>>

同步练习册答案