精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数(abcd为实常数)的图象关于原点对称,且当x=1时f(x)取得极值.

(Ⅰ)求函数f(x)的解析式;

(Ⅱ)证明:对任意∈[-1,1],不等式成立;

(Ⅲ)若函数在区间(1,∞)内无零点,求实数m的取值范围.

(1)(2)见解析(3)(-∞,1]


解析:

(Ⅰ)因为f(x)的图象关于原点对称,则f(x)为奇函数,所以f(0)=0,即d=0.(1分)

,即,则b=0.

所以.                                       

因为当x=1时f(x)取得极值,则,且.

,故.               

(Ⅱ)因为,则当-1≤x≤1时,.

所以f(x)在[-1,1]上是减函数.                                              

所以当x∈[-1,1]时,.              

故当∈[-1,1]时,.                        

(Ⅲ)因为,则.      

,得,即,即.

所以在区间上是增函数,在上是减函数,从而处取极小值.                                                                      

,若函数在区间(1,∞)内无零点,则,所以,即m≤1.

故实数m的取值范围是(-∞,1].                                           

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案