精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=ln(2x-a)的定义域是(1,+∞),则实数a的值为2.

分析 求出函数的定义域与已知条件相结合,即可得到a的值.

解答 解:要使函数f(x)=ln(2x-a)有意义,可得2x-a>0,
解得:x>log2a,
函数f(x)=ln(2x-a)的定义域是(1,+∞),
可得a=2.
故答案为:2.

点评 本题考查函数的定义域的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.若3f(x)+f(-x)=2x2-x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.y=$\sqrt{cosx+\sqrt{cosx}}$,求y′.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设集合M={x|-1≤x≤2},N={x|x-k≤0},若M∪N=N,则实数k的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{\sqrt{x+1}}{\sqrt{3-x}}$的定义域是(  )
A.(-∞,3)B.(-1,3)C.[-1,3)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)函数f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$是幂函数,且在(0,+∞)上是减函数,求m的值;
(2)已知函数y=x${\;}^{{n}^{2}-2n-3}$(n∈Z)的图象与两坐标轴均无交点,且其图象关于y轴对称.
①求出n的值;
②画出函数图象的示意图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)若函数f(x)=ax一(k-1)a-x(a>0.且a≠1)是定义在R上的奇函数.求实数k的值.
(2)求函数g(x)=loga(ax-a2)(a>0.且a≠1)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,在[1,+∞)递减.
(1)求a的值;
(2)求g(x)=a${\;}^{-{x}^{2}-2x}$的值域;
(3)解关于x的不等式:loga(-2x+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)是定义在R上的函数,且对任意x,y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,且f(1)=$-\frac{2}{3}$.
(1)证明f(x)在(-∞,+∞)上的单调性.
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)当x∈[-2,6]时,解不等式f(x2-3)>f(x)-2.

查看答案和解析>>

同步练习册答案