精英家教网 > 高中数学 > 题目详情
12.一个几何体的三视图如图所示,其中图1为正视图和侧视图(三角形为等腰直角三角形,四边形为边长为2的正方形),图2为俯视图(正方形为圆内接正方形),则这个几何体的表面积为(  )
A.$2\sqrt{2}π+20$B.$\frac{{2\sqrt{2}π}}{3}+8$C.$({2\sqrt{2}+2})π+16$D.$2\sqrt{2}π+16$

分析 由几何体的三视图得这个几何体的上半部分是圆锥,下半部分是正方体,其中正方体的棱长为2,圆锥的母线长l=2,底面半径r=$\sqrt{2}$,由此能求出几何体的表面积.

解答 解:由几何体的三视图得这个几何体的上半部分是圆锥,下半部分是正方体,
其中正方体的棱长为2,圆锥的母线长l=2,底面半径r=$\sqrt{2}$,
∴几何体的表面积为:
S=πrl+5×(22)+πr2-22=$π×2\sqrt{2}+20$=(2$\sqrt{2}+2$)π+16.
故选:C.

点评 本题考查几何体的表面积的求法,是基础题,解题时要认真审题,注意三视图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求函数y=$\sqrt{3tanx+\sqrt{3}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,△ABC为等边三角形,D,E是平面ABC同一侧的两点,DA⊥平面ABC,EB⊥平面ABC,EB=2DA.
(Ⅰ)求证:平面EDC⊥平面EBC;
(Ⅱ)若∠EDC=90°,求直线EB与平面EC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某三棱锥的三视图如图所示,则该几何体的体积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=exlnx+$\frac{{2{e^{x-1}}}}{x}$.
(1)求曲线y=f(x)在x=1处的切线方程;
(2)证明:f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将函数y=sin(x+$\frac{π}{6}$)(x∈R)的图象上所有点的纵坐标不变横坐标缩小到原来的$\frac{1}{2}$,再把图象上各点向左平移$\frac{π}{4}$个单位长度,则所得的图象的解析式为(  )
A.y=sin(2x+$\frac{5}{6}π$)B.y=sin($\frac{1}{2}$x+$\frac{1}{6}$π)C.y=sin(2x+$\frac{2}{3}$π)D.y=sin($\frac{1}{2}$x+$\frac{5}{12}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前n项和Sn满足:S5=30,S10=110,数列{bn}的前n项和Tn满足:Tn=$\frac{3}{2}$bn-$\frac{1}{2}$(n∈N*).
(1)求Sn与bn
(2)比较Snbn与Tnan的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.实数x,y满足$\left\{\begin{array}{l}{y≤2x+2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则z=|x-y|的最大值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若全集U=R,集合A={x|1<2x<4},B={x|x-1≥0},则A∩∁UB=(  )
A.{x|1<x<2}B.{x|0<x≤1}C.{x|0<x<1}D.{x|1≤x<2}

查看答案和解析>>

同步练习册答案