精英家教网 > 高中数学 > 题目详情
某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者,先从符合条件的志愿者中随机抽取100名按年龄分组:第1组第2组第3组第4组第5组得到的频率分布直方图如图所示,
(1)分别求第3,4,5组的频率。
(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3,4,5组各抽取多少名志愿者.
(3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
(1)0.3,0.2,0.1;(2)第3,4,5组中分别抽取3名,2名,1名志愿者;(3)

试题分析:
解题思路:(1)根据各个矩形的面积是频率求解;(2)利用分层抽样的特点“等比例抽样”求解;
(3)列举基本事件,利用古典概型概率公式求解.
规律总结:以图表给出的统计题目一般难度不大,主要考查频率直方图、茎叶图、频率分布表给出;抽样方法要注意各自的特点;古典概型是一种重要的概率模型,其关键是正确列举基本事件.
试题解析:(1)由题设可知,第3组的频率为,第4组的频率为,第5组的频率为.      
(2)第3组的人数为,第4组的人数为
第5组的人数为。因为第3,4,5组共有60名志愿者,若利用分层抽样的方法在60名志愿者中抽取6名志愿者,则每组抽取的人数分别为:第3组为,第4组为,第5组为.所以应从第3,4,5组中分别抽取3名,2名,1名志愿者.
(3)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,第5组的一名志愿者为C。
则从6名志愿者中抽取2名志愿者的可能情况有:(A1,A2),
(A1,A3),(A1,B1),(A1,B2),(A1,C),(A2,A3),(A2,B1),(A2,B2),(A2,C),(A3,B1),(A3,B2),(A3,C),(B1,B2),(B1,C)(B2,C),共15种。                         
其中第4组的2名志愿者至少有一名志愿者被抽中的可能情况有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),(B1,C)(B2,C),共9种.                
所以第4组至少有一名志愿者被抽中的概率为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知方程是关于的一元二次方程.
(1)若是从集合四个数中任取的一个数,是从集合三个数中任取的一个数,求上述方程有实数根的概率;
(2)若,求上述方程有实数根的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数之和为6的概率;
(2)两数之积是6的倍数的概率;
(3)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有外形相同的球分装三个盒子,每盒10个,其中,第一个盒子中7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一球,若取得标有字母A的球,则在第二个盒子中任取一球;若第一次取得标有字母B的球,则在第三个盒子中任取一球.若第二次取出的是红球,则称试验成功.求试验成功的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两个串联着的电子元件A,B,若其中一个损坏的话,电路便出故障,已知元件A的损坏率为0.2,元件B的损坏率为0.5,则该电路出故障的概率为(  )
A.0.1B.0.3C.0.6D.0.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若A、B为互斥事件,给出下列结论
①P(A)+P(B)<1;
②P(A)+P(B)=1;
③P(A)+P(B)≤1;
④P(A•B)=0,
则正确结论个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有一电路如图,共有4个开关,若每个开关闭合的概率都是
2
3
,且互相独立,则电路被接通的概率是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀, 授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为,他们考核所得的等级相互独立.
(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·江苏高考]现有某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为________.

查看答案和解析>>

同步练习册答案