精英家教网 > 高中数学 > 题目详情
设函数f(x)=lnx,g(x)=ax+
b
x
,它们的图象在x轴上的公共点处有公切线,则当x>1时,f(x)与g(x)的大小关系是(  )
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)=g(x)
D.f(x)>g(x)与g(x)的大小不确定
f(x)与x轴的交点′(1,0)在g(x)上,
所以a+b=0,在此点有公切线,即此点导数相等,
f′(x)=
1
x
,g′(x)=a-
b
x2

以上两式在x=1时相等,即1=a-b,
又因为a+b=0,
所以a=
1
2
,b=-
1
2

即g(x)=
x
2
-
1
2x
,f(x)=lnx,
定义域{x|x>0},
令h(x)=f(x)-g(x)=lnx-
x
2
+
1
2x

对x求导,得h′(x)=
1
x
-
1
2
-
1
2x2
=
2x-x2-1
2x2
=-
(x-1)2
2x2

∵x>1
∴h′(x)≤0
∴h(x)在(1,+∞)单调递减,即h(x)<0
∴f(x)<g(x)
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0.
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:p<(
9
10
)19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x-1)+
2a
x
(a∈R)

(1)求函数f(x)的单调区间;
(2)如果当x>1,且x≠2时,
ln(x-1)
x-2
a
x
恒成立,则求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+1)-
2x
的零点为x0,若x0∈(k,k+1),k为整数,则k的值等于
-1或1
-1或1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)设函数f(x)=ln(x+a)-x2
(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).
(2)若f(x)在区间[1,2]上为减函数,求a的取值范围.
(3)若直线y=x为函数f(x)的图象的一条切线,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln,则函数f()+f()的定义域为_______.

查看答案和解析>>

同步练习册答案