【题目】已知椭圆
的焦距为
,左、右顶点分别为
、
,
是椭圆上一点, 记直线
、
的斜率为
、
,且有
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于
、
两点, 以
、
为直径的圆经过原点, 且线段
的垂直平分线在
轴上的截距为
,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】某企业生产A,B两种产品,生产1吨A种产品需要煤4吨、电18千瓦;生产1吨B种产品需要煤1吨、电15千瓦。现因条件限制,该企业仅有煤10吨,并且供电局只能供电66千瓦,若生产1吨A种产品的利润为10000元;生产1吨B种产品的利润是5000元,试问该企业如何安排生产,才能获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,圆
的参数方程为
为参数),在以原点
为极点,
轴的非负半轴为极轴建立的极坐标系中,直线
的极坐标方程为
.
(1)求圆
的普通方程和直线
的直角坐标方程;
(2)设直线
与
轴,
轴分别交于
两点,点
是圆
上任一点,求
两点的极坐标和
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
已知平面直角坐标系
,以
为极点,
轴的非负半轴为极轴建立极坐标系,
点的极坐标为
,曲线
的参数方程为
(
为参数).
(1)写出点
的直角坐标及曲线
的直角坐标方程;
(2)若
为曲线
上的动点,求
中点
到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
:
,半径为2的圆
与
相切,圆心
在
轴上且在直线
的右上方.
(1)求圆的方程;
(2)若直线过点
且与圆
交于
,
两点(
在
轴上方,
在
轴下方),问在
轴正半轴上是否存在定点
,使得
轴平分
?若存在,请求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是公差为3的等差数列,数列{bn}是b1=1的等比数列,且
.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)令cn= an bn,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了保护环境,2015年合肥市胜利工厂在市政府的大力支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本
(万元)与处理量
(吨)之间的函数关系可近似地表示为:
且每处理一吨二氧化碳可得价值为20万元的某种化工产品.
(1)当
时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在冬季供暖时减少能量损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:
)满足关系:
,若不建隔热层,每年能源消耗费用为8万元,设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
达到最小,并求最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com