精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=3,a2=6,an+2=an+1-an,那么a6=(  )
A、-2B、-3C、-6D、-8
考点:数列的概念及简单表示法
专题:点列、递归数列与数学归纳法
分析:根据递推关系式先求出a3、a4、a5、a6的值,即可得到答案
解答: 解:∵a1=3,a2=6,an+2=an+1-an
∴a3=a2-a1=6-3=3,
a4=a3-a2=3-6=-3,
a5=a4-a3=-3-3=-6,
a6=a5-a4=-6-(-3)=-3,
故选:B.
点评:本题主要考查数列项的求解,根据递推公式依次进行递推是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+cosx,则f′(
π
6
)=(  )
A、
1
2
B、
3
2
C、1-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
①?x∈R,sinx+cosx>1;
②?x∈R,x2-x+1<0;
③“x>1”是“|x|>1”的充分不必要条件;
④若
a
b
=0,则|
a
|=|
b
|=0.
其中假命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1,x≤1
-x+3,x>1
,则f(2)=(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

按图所示的程序框图运算:若输出k=2,则输入x的取值范围是(  )
A、(20,25]
B、(30,32]
C、(28,57]
D、(30,57]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
a
3
x3-ax2+x+1.
(Ⅰ)若f(x)在x=x1,x=x2处取得极值,且1<
x2
x1
≤5,求实数a的取值范围;
(Ⅱ)当x≥2时,求3f(x)+|f′(a)-1|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,满足Sn=
3
2
an-n.
(Ⅰ)求证:数列{an+1}是等比数列;
(Ⅱ)令bn=log3(a1+1)+log3(a2+1)+…+log3(an+1),则对任意n∈N*,是否存在正整数m,使
1
b1
+
1
b2
+…+
1
bn
m
4
都成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为喜迎马年新春佳节,某商场在进行抽奖促销活动,当日在该店消费满500元的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“马”“上”“有”“钱”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“钱”字球,则停止取球.获奖规则如下:依次取到标有“马”“上”“有”“钱”字的球为一等奖;不分顺序取到标有“马”“上”“有”“钱”字的球,为二等奖;取到的4个球中有标有“马”“上”“有”三个字的球为三等奖.
(Ⅰ)求分别获得一、二、三等奖的概率;
(Ⅱ)设摸球次数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点(x,y)位于曲线y=|x-2|与y=1所围成的封闭区域内,则2x+y的最小值为
 

查看答案和解析>>

同步练习册答案