精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)已知函数f(x)=
ax+1,x≤0
log2x,x>0
,则下列关于函数y=f(f(x))+1的零点个数的判断正确的是(  )
分析:因为函数f(x)为分段函数,函数y=f(f(x))+1为复合函数,故需要分类讨论,确定函数y=f(f(x))+1的解析式,从而可得函数y=f(f(x))+1的零点个数
解答:解:分四种情况讨论.
(1)x>1时,log2x>0,∴y=f(f(x))+1=log2(log2x)+1,此时的零点为
2

(2)0<x<1时,log2x<0,∴y=f(f(x))+1=alog2x+1,则a>0时,有一个零点,a<0时,没有零点,
(3)若x<0,ax+1≤0时,y=f(f(x))+1=a2x+a+1,则a>0时,有一个零点,a<0时,没有零点,
(4)若x<0,ax+1>0时,y=f(f(x))+1=log2(ax+1)+1,则a>0时,有一个零点,a<0时,没有零点,
综上可知,当a>0时,有4个零点;当a<0时,有1个零点
故选A
点评:本题考查分段函数,考查复合函数的零点,解题的关键是分类讨论确定函数y=f(f(x))+1的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案