精英家教网 > 高中数学 > 题目详情
12.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1,F2,且|F1F2|=2,点P($\sqrt{2}$,$\frac{\sqrt{6}}{2}$)在E上.
(1)求椭圆E的方程;
(2)过P作x轴的垂线交x轴于Q,过Q的直线交椭圆E于A,B两点,求△AOB面积的最大值.

分析 (1)由题意可知:2c=2,c=1,a2=b2+c2=b2+1,将P($\sqrt{2}$,$\frac{\sqrt{6}}{2}$)代入椭圆方程,即可求得a和b的值,求得椭圆方程;
(2)设AB的方程为:y=k(x-$\sqrt{2}$),代入椭圆方程,由韦达定理及弦长公式可知:丨AB丨=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{6{k}^{2}+9}}{3+4{k}^{2}}$,△AOB面积的S=$\frac{1}{2}$•d•丨AB丨,设S=t,则t2=3-$\frac{27}{16{k}^{4}-124{k}^{2}+9}$,则k不存在时,即AB⊥x轴时,t2取最大值,△AOB面积的最大值$\sqrt{3}$.

解答 解:(1)由题意可知:|F1F2|=2,即2c=2,c=1,
由a2=b2+c2=b2+1,
由P($\sqrt{2}$,$\frac{\sqrt{6}}{2}$)在E上,则$\frac{2}{{b}^{2}+1}+\frac{3}{2{b}^{2}}=1$,解得:b2=3,a2=4,
∴椭圆的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)过P作x轴的垂线交x轴于Q,则Q($\sqrt{2}$,0),
设AB的方程为:y=k(x-$\sqrt{2}$),A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=k(x-\sqrt{2})}\end{array}\right.$,整理得:(3+4k2)x2-8$\sqrt{2}$k2x+8k2-12=0,
由韦达定理可知:x1+x2=$\frac{8\sqrt{2}{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{8{k}^{2}-12}{3+4{k}^{2}}$,
丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{6{k}^{2}+9}}{3+4{k}^{2}}$,
O到直线AB的距离d=-$\frac{丨-\sqrt{2}k丨}{\sqrt{1+{k}^{2}}}$=$\frac{\sqrt{2}丨k丨}{\sqrt{1+{k}^{2}}}$,
△AOB面积的S=$\frac{1}{2}$•d•丨AB丨=$\frac{2\sqrt{2}丨k丨\sqrt{6{k}^{2}+9}}{3+4{k}^{2}}$,
设S=t,则t2=3-$\frac{27}{16{k}^{4}-124{k}^{2}+9}$,
则k不存在时,即AB⊥x轴时,t2取最大值,
∴△AOB面积的最大值$\sqrt{3}$.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,点到直线的距离公式,弦长公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知双曲线C1与椭圆C2:$\frac{y^2}{36}+\frac{x^2}{27}$=0有相同焦点,且经过点($\sqrt{15}$,4).
(1)求此双曲线C1的标准方程;
(2)求与C1共渐近线且两顶点间的距离为4的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga(1-x)+loga(3+x)(0<a<1)
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为-4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知倾斜角为45°的直线l过椭圆$\frac{{x}^{2}}{4}$+y2=1的右焦点,则l被椭圆所截的弦长是(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(  )
A.(x-1)2+y2=1B.(x-1)2+y2=4C.(x-1)2+y2=2D.(x-1)2+y2=$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用二分法求函数f(x)=3x-x-4的零点时,其参考数据如下
f(1.6000)=0.200f(1.5875)=0.133f(1.5750)=0.067
f(1.5625)=0.003f(1.5562)=-0.029f(1.5500)=-0.060
据此数据,可得f(x)=3x-x-4的一个零点的近似值(精确到0.01)为(  )
A.1.55B.1.56C.1.57D.1.58

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)={2^x}|{{{log}_{\frac{1}{2}}}x}|-1$的零点个数为(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE(A′∉平面ABC)是△ADE绕DE旋转过程中的一个图形,有下列说法,不正确的是(  )
A.平面A′FG⊥平面ABC
B.BC∥平面A′DE
C.三棱锥A′-DEF的体积最大值为$\frac{1}{64}{a^3}$
D.直线DF与直线A′E有可能异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题p:?x0∈R,x0≤2的否定是(  )
A.¬p:?x∈R,x≤2B.¬p:?x∈R,x>2C.¬p:?x∈R,x>2D.¬p:?x∈R,x≤2

查看答案和解析>>

同步练习册答案