精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=loga(1-x)+loga(3+x)(0<a<1)
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为-4,求a的值.

分析 (1)由$\left\{\begin{array}{l}1-x>0\\ 3+x>0\end{array}\right.$得函数f(x)的定义域;
(2)若函数f(x)的最小值为-4,则loga4=-4,解得a的值.

解答 (本小题满分12分)
解:(1)由$\left\{\begin{array}{l}1-x>0\\ 3+x>0\end{array}\right.$得:x∈(-3,1),
故函数f(x)的定义域为(-3,1),…6分
(2)函数f(x)=loga(1-x)+loga(3+x)=loga(-x2-2x+3),
∵0<a<1,
故当-x2-2x+3取最大值4时,函数f(x)取最小值为-4,
即loga4=-4,
解得:$a=\frac{{\sqrt{2}}}{2}$…12分

点评 本题考查的知识点是对数函数的图象和性质,函数的定义域,函数的最值及其几何意义,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2}则关于x的不等式bx2-ax-2>0的解集为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x、y的取值如表所示:
x0134
y2.24.34.86.7
若y与x线性相关,且y=2x+a,则a=0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知一次函数y=f(x)中,f(8)=16,f(2)+f(3)=f(5),则f(1)+f(2)+f(3)+…+f(100)=10100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某工厂在两年内生产产值的月增长率都是a,则第二年某月的生产产值与第一年相应月相比增长了(1+a)12-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{2x+y≤3}\end{array}\right.$所表示的平面区域的面积为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A,B,C三点不共线,点O为平面ABC外的一点,则下列条件中,能得到P∈平面ABC的是(  )
A.$\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$B.$\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{4}{3}\overrightarrow{OB}-\overrightarrow{OC}$
C.$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$D.$\overrightarrow{OP}=\overrightarrow{OA}-\overrightarrow{OB}-\overrightarrow{OC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1,F2,且|F1F2|=2,点P($\sqrt{2}$,$\frac{\sqrt{6}}{2}$)在E上.
(1)求椭圆E的方程;
(2)过P作x轴的垂线交x轴于Q,过Q的直线交椭圆E于A,B两点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如果P:关于x的不等式x2+2ax+4>0对一切 x∈R都成立,q:关于 x 的方程 4x2+4(a-2)x+1=0无实数根,且P与q中有且只有一个是真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案