精英家教网 > 高中数学 > 题目详情
精英家教网如图,△ABC中,AI、BI分别平分∠BAC、∠ABC.CE是△ABC的外角∠ACD的平分线,交BI延长线于E,连接CI.
(1)△ABC变化时,设∠BAC=2α.若用α表示∠BIC和∠E;
(2)若AB=1,且△ABC与△ICE相似,求相应AC长.
分析:(1)在△BCE中,利用三角形的内角和定理得到∠E与另外三个角的关系,再在△ABC中得出角α与另外三个角的关系,从而可得到∠E=α,
依据角平分线得到∠ECI是平角∠BCD的一半,是个直角,再根据三角形的外角等于不相邻的两个内角的和即可求解∠BIC.
(2)根据相似三角形对应边的比相等,即可求解.
解答:解:(1)在△BCE中有:∠E=180°-∠BCE-∠CBE,
又∠ECI是平角∠BCD的一半,∴∠ECI=90°,
∴:∠E=90°-∠BCI-∠CBE,
在△ABC中:
1
2
∠BAC=
1
2
(180°-∠ABC-∠ACB)
=90°--∠BCI-∠CBE,
∴∠E=α.
在三角形∠BIC=90°+α,∠E=α
(2)①当△ABC∽△ICE时,∠ABC=∠ICE=90°,∠ACB=∠IEC=α,
所以α=30°,AC=2
②当△ACB∽△ICE时,∠ACB=∠ICE=90°,∠ABC=∠IEC=α,
所以α=30°,AC=
1
2

③当△BAC∽△ICE时,∠BAC=∠ICE=90°,∠IEC=
1
2
∠BAC=45°,
所以∠ABC=∠ACB=45°,AC=AB=1.
点评:两三角形相似,注意根据对应边的不同,分情况讨论是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在△ABC中,AB⊥AC,
BD
=
5
3
BC
|
AC
|
=2,则
AC
AD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,△ABC中,∠B=90°,AB=
2
,BC=1,D、 E
两点分别在线段AB、AC上,满足
AD
AB
=
AE
AC
=λ,λ∈(0,1)
.现将△ABC沿DE折成直二面角A-DE-B.
(1)求证:当λ=
1
2
时,面ADC⊥面ABE;
(2)当λ∈(0,1)时,直线AD与平面ABE所成角能否等于
π
6
?若能,求出λ的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江大庆实验中学高二上学期开学考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.

(I)求二面角P—BC—A的正切值;

(II)求二面角C—PB—A的正切值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆实验中学高二(上)期初数学试卷(理科)(解析版) 题型:解答题

如图,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

同步练习册答案