精英家教网 > 高中数学 > 题目详情

【题目】学生学习的自律性很重要.某学校对自律性与学生成绩是否有关进行了调研,从该校学生中随机抽取了100名学生,通过调查统计得到列联表的部分数据如下表:

自律性一般

自律性强

合计

成绩优秀

40

成绩一般

20

合计

50

100

1)补全列联表中的数据;

2)判断是否有的把握认为学生的自律性与学生成绩有关.

参考公式及数据:.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

【答案】1)列联表见解析;(2)有的把握认为学生的自律性与学生成绩有关.

【解析】

1)由总人数为100可补全表中的数据

2)算出即可

1)因为总人数为100,可填写列联表如下:

自律性一般

自律性强

合计

成绩优秀

10

30

40

成绩一般

40

20

60

合计

50

50

100

2)根据表中数据,得

所以有的把握认为学生的自律性与学生成绩有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示将同心圆环均匀分成n().在内环中固定数字1~n.问能否将数字1~n填入外环格内,使得外环旋转任意格后有且仅有一个格中内外环的数字相同

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.

求甲在4局以内(含4局)赢得比赛的概率;

为比赛决出胜负时的总局数,求的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若,求证:

(2)若时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为,且三家企业的购买结果相互之间没有影响,则三家企业中恰有1家购买该机床设备的概率是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与直线垂直,求函数的极值;

(2)设函数.=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)经过两点.

(1)求椭圆的方程;

(2)过原点的直线与椭圆交于两点,椭圆上一点满足,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一张半径为1米的圆形铁皮,工人师傅需要剪一块顶角为锐角的等腰三角形,不妨设 , 边上的高为 ,圆心为 ,为了使三角形的面积最大,我们设计了两种方案.

(1)方案1:设 ,用表示 的面积 ; 方案2:设的高,用表示 的面积

(2)请从(1)中的两种方案中选择一种,求出面积的最大值

查看答案和解析>>

同步练习册答案