| A. | (-∞,-3) | B. | (1,+∞) | C. | (-3,-1) | D. | (-∞,-3)∪(1,+∞) |
分析 判断函数f(x)为偶函数,讨论x>0时,f(x)为增函数,再由偶函数的性质:f(|x|)=f(x),以及单调性,可得|2x|>|x-3|,解不等式即可得到所求解集.
解答 解:函数f(x)=2${\;}^{1+{x^2}}}$-$\frac{1}{{1+{x^2}}}$,
有f(-x)=f(x),f(x)为偶函数,
当x>0时,可得y=2${\;}^{1+{x}^{2}}$递增,y=-$\frac{1}{{1+{x^2}}}$递增.
则f(x)在(0,+∞)递增,
且有f(|x|)=f(x),
则f(2x)>f(x-3)即为f(|2x|)>f(|x-3|),
即|2x|>|x-3|,
则|2x|2>|x-3|2,
即为(x+3)(3x-3)>0,
解得x>1或x<-3.
故选:D.
点评 本题考查函数的奇偶性和单调性的运用:解不等式,注意运用复合函数的单调性和偶函数的性质,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|$\frac{3}{4}$≤x<2} | B. | {x|$\frac{1}{3}≤x<2$} | C. | {x|x>2或$x<\frac{1}{3}$} | D. | {x|x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1<x<2} | B. | {x|x>1或x≤2} | C. | {x|1<x≤2} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①成立,②不成立 | B. | ①不成立,②成立 | C. | ①②都成立 | D. | ①②都不成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com