精英家教网 > 高中数学 > 题目详情
15.设复数z满足关系z•i=-1+$\frac{3}{4}$i,那么z=$\frac{3}{4}$+i,|z|=$\frac{5}{4}$.

分析 直接利用复数的除法的运算法则化简求解,以及复数的模的求法求解即可.

解答 解:复数z满足关系z•i=-1+$\frac{3}{4}$i,可得z=$\frac{-1+\frac{3}{4}i}{i}$=-$\frac{1}{i}+\frac{3}{4}$=$\frac{3}{4}$+i.
|z|=$\sqrt{(\frac{3}{4})^{2}+{1}^{2}}$=$\frac{5}{4}$.
故答案为:$\frac{3}{4}$+i;$\frac{5}{4}$.

点评 本题考查复数的代数形式混合运算,复数的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=2${\;}^{1+{x^2}}}$-$\frac{1}{{1+{x^2}}}$,则使得f(2x)>f(x-3)成立的x的取值范围是(  )
A.(-∞,-3)B.(1,+∞)C.(-3,-1)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若奇函数f(x)在R上是减函数,且f(1-a)+f(2a-5)≥0,则a的取值范围是(  )
A.(-∞,2]B.(-∞,4]C.[2,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中为奇函数的是(  )
A.y=2xB.y=x2C.y=$\sqrt{x}$D.y=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:$\sqrt{{{({2-π})}^2}}$=π-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=lg(2x-4),则方程f(x)=1的解是7,不等式f(x)<0的解集是(2,2.5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在公差为d的等差数列{an}中有:an=am+(n-m)d (m、n∈N+),类比到公比为q的等比数列{bn}中有:${b_n}={b_m}•{q^{n-m}}({m,n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数z满足|z|=1,则|z-3-4i|的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知全集U={1,2,3,4,5,6},集合A={x|x2-3x+2=0},B={x|2≤x≤4,x∈Z},则集合∁U(A∪B)中元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案