精英家教网 > 高中数学 > 题目详情
7.在公差为d的等差数列{an}中有:an=am+(n-m)d (m、n∈N+),类比到公比为q的等比数列{bn}中有:${b_n}={b_m}•{q^{n-m}}({m,n∈{N^*}})$.

分析 因为等差数列{an}中,an=am+(n-m)d (m,n∈N+),即等差数列中任意给出第m项am,它的通项可以由该项与公差来表示,推测等比数列中也是如此,给出第m项bm和公比,求出首项,再把首项代入等比数列的通项公式中,即可得到结论.

解答 解:在等差数列{an}中,我们有an=am+(n-m)d,类比等差数列,等比数列中也是如此,${b_n}={b_m}•{q^{n-m}}({m,n∈{N^*}})$.
故答案为${b_n}={b_m}•{q^{n-m}}({m,n∈{N^*}})$.

点评 本题考查了类比推理,类比推理就是根据两个不同的对象在某些方面的相似之处,从而推出这两个对象在其他方面的也具有的相似之处,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.下列函数:①f(x)=3|x|,②f(x)=x3,③f(x)=ln$\frac{1}{|x|}$,④f(x)=x${\;}^{\frac{4}{3}}}$,⑤f(x)=-x2+1中,既是偶函数,又是在区间(0,+∞)上单调递减函数为③⑤.(写出符合要求的所有函数的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x(x+1)=0},那么(  )
A.-1∉AB.0∈AC.1∈AD.0∉A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设复数z满足关系z•i=-1+$\frac{3}{4}$i,那么z=$\frac{3}{4}$+i,|z|=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线y2=2px,过焦点且垂直x轴的弦长为6,抛物线上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,线段AB的垂直平分线与x轴交于点C.
(1)求抛物线方程;
(2)试证线段AB的垂直平分线经过定点,并求此定点;
(3)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{OA}$=(1,2,3),$\overrightarrow{OB}$=(2,1,2),$\overrightarrow{OC}$=(1,1,2),点M在直线OC上运动,则$\overrightarrow{MA}$•$\overrightarrow{MB}$的最小值为$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若复数z1=4+19i,z2=6+9i,其中i是虚数单位,则复数z1+z2的实部为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,如果S△ABC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4}$,那么∠C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l:kx-y-3k=0与圆M:x2+y2-8x-2y+9=0.
(1)直线过定点A,求A点坐标;
(2)求证:直线l与圆M必相交;
(3)当圆M截直线l所得弦长最小时,求k的值.

查看答案和解析>>

同步练习册答案