分析 (1)直线l可化为:y=k(x-3),过定点A(3,0);
(2)由已知中直线l:kx-y-3k=0,我们可得直线必过点P(3,0),代入圆方程可得点P在圆内,由此即可得到答案.
(3)根据当圆M截直线l所得弦长最小时,l与MP垂直,我们根据M、P点的坐标,求出MP的斜率,进而即可求出满足条件的k的值.
解答 (1)解:直线l可化为:y=2(x-3),所以直线l恒过点A(3,0);
(2)证明:∵直线l恒过点P(3,0),
代入圆的方程可得x2+y2-8x-2y+9<9,
∴P(3,0)点在圆内;
则直线l与圆M必相交;
(3)解:圆M截直线l所得弦长最小时,则MP与直线l垂直,
∵M点坐标为(4,1),P(3,0),
∴KMP=1,
∴k=-1.
点评 本题考查的知识点是直线与圆相交的性质,其中恒过圆内一点时,直线与圆相交,圆M截直线l所得弦长最小时,MP与l垂直都是直线与圆问题中经常考查的知识点.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{1}{4},\frac{3}{4}}]$ | B. | $[{0,\frac{3}{4}}]$ | C. | $[{\frac{1}{4},\frac{1}{2}}]$ | D. | $[{\frac{1}{4},\frac{1}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com