精英家教网 > 高中数学 > 题目详情
12.已知集合A={x|(x+3)(x-6)≥0},B={x|$\frac{x+2}{x-14}$<0}.
(1)求A∩∁RB;
(2)已知E={x|2a<x<a+1}(a∈R),若E⊆B,求实数a的取值范围.

分析 (1)化简集合A、B,求出∁RB与A∩∁RB即可;
(2)由子集的定义,分E=∅和E≠∅时,求出实数a的取值范围即可.

解答 解:(1)因为集合A={x|(x+3)(x-6)≥0}={x|x≤-3或x≥6},
B={x|$\frac{x+2}{x-14}$<0}={x|(x+2)(x-14)<0}={x|-2<x<14}; (4分)
RB={x|x≤-2或x≥14},(6分)
所以A∩∁RB={x|x≤-3或x≥14}; (8分)
(2)因为E={x|2a<x<a+1}(a∈R),且E⊆B,
所以分两种情况:
当E=∅时,2a≥a+1解得a≥1;     (10分)
当E≠∅时,则2a<a+1且满足$\left\{\begin{array}{l}{2a≥-2}\\{a+1≤14}\end{array}\right.$解得-1≤a<1; (13分)
综上所述:实数a的取值范围是a≥-1.(14分)

点评 本题考查了集合的化简与运算问题,也考查了分类讨论思想的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知抛物线y2=2px,过焦点且垂直x轴的弦长为6,抛物线上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,线段AB的垂直平分线与x轴交于点C.
(1)求抛物线方程;
(2)试证线段AB的垂直平分线经过定点,并求此定点;
(3)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知长方体ABCD-A1B1C1D1中,E、M、N分别是BC、AE、CD1的中点,AD=AA1=a,AB=2a.求证:MN∥平面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=AC=2,PA=$\sqrt{2}$,E,F分别是PB,BC的中点,则EF与平面PAB所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,是偶函数且在区间(0,1)上为增函数的是(  )
A.f(x)=log2|x|B.y=3-xC.y=$\frac{1}{x}$D.y=-x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l:kx-y-3k=0与圆M:x2+y2-8x-2y+9=0.
(1)直线过定点A,求A点坐标;
(2)求证:直线l与圆M必相交;
(3)当圆M截直线l所得弦长最小时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求函数f(x)=$\frac{1}{ln(x+1)}$+$\sqrt{4-{x}^{2}}$的定义域;
(2)已知函数f(x+3)的定义域为[-5,-2],求函数f(x+1)+f(x-1)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.大西洋鲑鱼每年都要逆流而上游回产地产卵,科学家发现鲑鱼的游速可以表示为函数v=$\frac{1}{2}$log3(${\frac{x}{100}$π),单位是m/s,其中x表示鱼的耗氧量的单位数.则一条鲑鱼静止时耗氧量的单位数是$\begin{array}{l}\frac{100}{π}\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)-x2=g(x),x∈R,若函数f(x)为偶函数,则g(x)的解析式可以为(  )
A.x3B.cosxC.1+xD.xex

查看答案和解析>>

同步练习册答案